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Two-stage Approach for Solving the Multi-objective
Optimization Problem on Combinatorial
Configurations

Liudmyla Koliechkina, Olena Dvirna

Abstract— ‘I'he statement of the mulli-objeclive optimization
problem on combinatorial configurations is formulated, and the
approach (o its solution is proposed. The problem is of inferest as a
combinatorial optimization one with many criferia. which is a model
of many applied fasks. The approach {o solving the multi-objective
optimization problem on combinatorial configurations consists of two
stages: the first is the reduction of the multi-objective problem to the
gingle criferion based on existing multi-objective  oplimization
methods. the second stage solves the directly replaced single criterion
combinatorial optimization problem by the horizontal combinatorial
method. This approach provides the oplimal solution to the multi-
objective opfimization problem on combinatorial configurations,
{aking info account additional restrictions tor a finite number of steps.

Keywords— discrete set, lincar combinatorial oplimization,
multi-objective  optimization. multipermutation, Pareto  solutions.
partial permutation set. permutation, structural graph.

1. INTRODUCTION

HE Toptimization problems of several functions arise in

the study of many theoretical and practical problems. Any
applicd task of optimal design of complex cconomic and
technical systems, schemes, technological deviees, structures,
scheduling, planning and management of production activities,
cte. requires the construction of a mathematical model taking
into account many criteria and limitations | 1]-6]. This 13 a
multi-objective optimization problem. Research in the field of
mulli-purpose oplimization is currently intensively stimulated
by practical nceds and the development of computer
information technologies | 7[-9].

The main  propertics of multi-objective  optimization
problems — the presence of many crileria, signilicant a
restriction, variables of ditferent scales, and algorithmically
defined functions — make traditional methods impossible ©
use. The way out of this situation i1s the use ol adaplive
stochastic  algorithms  that  successfully  overcome  these
difficulties. When investigation the problem of multi-objective
often one of them is selected as the dominant one. All other
criteria are taken as limitations, and optimization is carried out
according to the dominant criterion. When combining many
functions into a vector criterion, we gel a standard
optimization problem. However, an adequate mathematical
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model of real problems ineludes several objective functions, as
well as some additional restrictions, which makes its solution
much more complicated. Given the discreteness of many
optimization problems, we obtain multi-objective problems on
diserete sets. In particular, many problems of planning,
management, design and placement are modeled using multi-
purpose tasks, the solutions of which arc combinatorial in
nature, for example, permutations, partial  permutations,
combinations, compositions, partitions, as well as their
composite sets. In this case, the scarch for the optimal solution
15 carried out on the corresponding combinatorial set or its
own subset [10].

When mapping combinatorial sets into an  arithmetic
Fuclidean space, they acquire special properties [ 11]-]18].
Tluclidean combinatorial sets are vertex-spaced sets of space
R7and in most cases coincide with the vertices of their
convex cover [11], [12]. Optimization methods tor linear,
quadratie, and convex functions for various classes of vertex-
spaced sets were considered in [19]-[28], and in a multi-
objective setting 10 [29]-[33]. Combinatorial sets are closcly
related to the concept of combinatorial configuration. The
study of combinatorial conligurations and their properties is
the subjectof [ T1], [12], [22],[34], ]33]

In [19], [29]-133] methods for solving multi-criterion
optimization problems on discrete sets are considered. The
traditional methods of multi-objective optimization can be
divided mto three key approaches. The first is related o the
idea of ranking the criteria according to the importance and
sequence of further optimization of cach criterion individually
with the assignment of an allowable value tor changing the
value of the eriterion obtained in the previous step. The second
approach consists in 1solating the main criterion {rom all the
criteria, and then optimizing 1t and translating the rest into
restrictions. The third approach is the scalarization of a vector
criterion into one generalized criterion. The main problem that
concerns most traditional methods is the need to run the
algorithm several times to obtain a representative
approximation of the sct of effective points (the number of
tterations 1s equal to the power of the proposed approximation
of the Pareto set). Thus, the problem of constructing new
methods  for  solving  multi-objective  problems  on
combinatorial sets and the simultancous inclusion ot many
criteria 1s relevant.

The purpose of the article 1s to present an approach to
solving  multi-objective  optimization  problems  on
combinatorial configurations. The problem is solved in two
stages. The first one is to reduce the problem multi-objective
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to single criterion based on convolution methods. The second
stage  solves  the direetly replaced  single  eriterion
combinatorial optimization problem by the method ol
normalizing matrices.

The article 1s organized as follows - in the second and third
parts, the multi-objective  optimization  problem  on
combinatorial configurations is formulated and the properties
of combinatorial contigurations and their graphs are described.
‘I'he fourth part 1s devoted to the deseription of the approach to
solving the problem of multi-objective optimization on the
permutation set. The new approach provides an optimal
solution 1o a multi-objective optimization problem on
permutation set, taking into account additional restrictions for
a certain number of steps. To demonstrate the work of the
approach, the fifth part of the article presents numerical
experiments characterizing its finiteness and effectiveness, as
well as an analysis of their results.

[1. STATEMENT OF THE PROBLEM OF MULTT-OBJECTIVE
OPTIMIZATION ON COMBINATORIAL CONTIGURATIONS

A Fuclidean combinatorial configurations

B={b.hb,...h }bc

"

let  the set given, and let

A ={a].,a.3,..,an} be a finite set, and let y:B — .4 is the
mapping that corresponds to cach clement he /3 a single

element a€Ad. ie wa= y(b). Define the configuration
according to [11] as a mapping y: /8 — . that satisfics some
set of constraints A . For most cases. you can unify the set B .
1¢ the clements of the set can be replaced by their ordinal
numbers. By setling the bijective mapping between /2 and
J,, J,={L2....m}, we obtain the transformation of the

m

mapping, into

p:J, >4 (H
The combinatorial configuration can be represented by a
tuple [11]

(g 4. A). (2)
where ¢ — the representation of the form (1), which satislies
the set of constraints A, 1 — the resulting set, the clements ol
which are strictly ordered.

Consider the set as the result set when forming the
conliguration (2) [35]

A* = {(zl.‘(zzﬁ..,a"} R 3)

which is a set of vectors of the same dimension of space R¥.
and as A — consider the set of corresponding constraints that
determine the required contiguration.
We will put a veetor in unambiguous correspondence 10
cach configuration 7 = [(ZI.I RS- 9 J
x=(xl.,xz,...ﬁxN')eR'V,N =k-m (GY]

whose components are an ordered set of elements ol a

305

multiset

[4¢ vy = -
A(x) = N N YN YRR YR I PINEN (3

thus setting the bijective mapping such that

1, -~ .

s=y (7). m =y (x) (6)

Luclidean combinatorial configuration (e-configuration) is
called mapping

w (¢, A*,@)—> RY 7N
where ¢:J, — A%, A* — the resulting set of the form (3), ®
— 4 system of constraints on the mappings ¢, .

The defined of Luclidean combinatorial configuration 1s an
image of the combinatorial contiguration (2) in the arithmetic

Tuclidean space K" at given mappings @, and determines
the vector x form (4). ;4(.}:) 13 called the inducing multiset of
the Tluclidean combinatorial configuration. et

®

I = {x e RY 1 x— luclidean combinatorial configurations (7 )}

Aset X =F' cR” of the form (8) is called a set of e-

configurations of permutations, if the inducing multiset of all
its clements is a proper subset of the multiset inducing the set,

ie. wel Ad(x)cd.

B. Multi-ohjective Optimization Problem on Combinatorial
Configurations (AOPCC)

let X = E.”c c R" and D X be the set of admissible
values of e-configurations. which is distinguished from X by a
system ol additional constraints.

Suppose that /[ :X —>R',jeJ, the functions that are
components of the criterion
F(x)= (,’l (x)eee f, (‘r)) are given. We have the task of

optimality

linding the optimal solution:

F(x)= (/] (%) f, (x)) — exir, (®)
xeDcX .
Problem (8) 1s a problem of vector Euclidean combinatorial
optimization.
let all components of the vector ecriterion be linear
[unctions, 1.c.

L) ={e,x,) i€, e, )

and D 1s distinguished from X by linear constraints.
Then the problem MOPCC takes the torm: find the set of
optimal values of functions

f (r) = <cﬁxj> —extr.iel,. jel, (10
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xeDclX
where it is formed by restrictions of a kind

{ay,)<h.icd,. jel, (1

Problem (&), (10) - (11) will be a multi-objective problem of
linear Liuclidean combinatorial optimization (MOPLLCO).
(. Solutions Set of MOPLECOQ

The solution of MOPLECO is X'~

set. In the transition from combinatorial to Fuclidean

combinatorial optimization we obtain the corresponding sets
I (1",X) — ideul, P(lf, X) - Parcto-optimal, S/(F.X)

— the effective solutions

poorly efficient and Sm(F,X) — strictly efficient solutions

that correspond to the following sets and will look like:

1 X)={eX F(x)= ]
P(F.X)={seX A eX F(X)2F(x).F(x)=
SHILX)={xeX I e X 1(x) > 1"(x)
Sm(# N )=fre X B e N ifal 1 (x) 2 1 (x)}

Then the set of solutions will look like

F ()

E, = {1 (J.X).P(#.X),SH.X ), Sm (I",X)}
When solving a problem in the general case, it 1s necessary
to find some sct
X, =I(F.X),
XS

Sm

X eE,.
X, =PF.X),

=Sm(#,.Y) . In what follows, we will look for a set .Y,

Denote the required sets by

X, =SIF, X)),

of Pareto-optimal solutions in the problems. As mentioned
above, according to the requirements of this problem, it is
often sufficient to find part of the set of optimal solutions or
one solution that belongs to this set. When solving such
problems, 1t 1s important to take into account the speeilics ol
the combinatorial set. The use of their connection with graph
theory 1s promising. In [34] the graphs of combinatorial
polyhedra were studied, in [ 18], [22], |34] the representation
ol combinatorial sets in the form of grid graphs and structural
graphs is described. This direction is promising for the
development of new methods for solving problems (8), (10),
(11) and is used in this work.,

III. PROPERTIES OF COMBINATORIAL CONFIGURATIONS AND
THEIR GRAPHS
Consider the representation of a  set of  Fuclidean
combinatorial configurations of placements in the form of a
structural graph. T.et X’ be a subset of a set of combinatorial
confligurations X  whose clements have the form

x—(r SXyn X, ) X' are formed on a certain basis. for

W
example, on the fixed coordinates. Suppose a linear function is
given, the coefficients of which are ordered in ascending

order, 1.¢.
(12)

feoy={cx).iel, e<e, <<

m? - _—'“—cm‘
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We describe the concept of a structural graph. Tet
GY (l-’m',l:’) be a graph of a subsct of combinatorial
configurations X , and the set X" is structured in such a way

r_ oyt . . .
ANM=XuvX,/u. U] ied,

corresponds to vertices with 72 fixed coordinates and 1s

that each subset X,

xt

represented by two vertices x! and  x”  such that the

conditions for the function of form (12) hold:

() =max f (), (I3

/() =min g ().
and the edges of the graph G (l-:' l~) are those that connect
the corresponding vertices x7, ¥, and the vertices formed by
successive transpositions of fixed coordinates, then such a

graph will be called a structural graph of the set of Fuclidean
combinatorial  configurations and we  will  denote
G170 h).

Determinants for the construction of a structural graph are its
vertiees, which are defined as leakage and runofT.

X eX/ied, of the

Definition 1 The vertices x,

structural graph (j.;.r (I}, T;",h) for which conditions (13) are
satisfled are called the vertices of leakage and runoff,
respectively, and the quantity A is the level of the structural
graph.

Statement 1 The number of levels of a structural graph
G_;\' (l:",(ll) is equal to the number of different elements of
the generating set A for combinatorial configurations, 1.¢. the
power of its basis S(A) .

Next,  we  consider  the  FKuchidean  combinatorial
configuration of permutation and its properties and the
properties of graphs of the set of permutation.

Fxample 1 Suppose we have a set of  Fuclidean
combinatorial configurations of permutation of dimension 4
from the set A= {I 2.3.4. 5.6} Clet's put A= 2, that is we will
lix last two coordinates. We obtain the following set of
coordinate pairs:

(5.6).(5.4).(5.3).

(4:2).(4.1)(3.6).
.5).(2.4).(2.3).

N -IZ-A
w

Thus, we obtain thirty levels of the structural graph and the
corresponding number of pairs of vertices x! and y*. Denote

them selectively in Fig. 1.
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vector optimization methods. The most common, but not very
accurate, are the methods of lincar convolution. Also methods
of an 1deal point, satisficd requirements, and consceutive
concessions are used [3].

Consider the method of consecutive concessions according
to [5]. To simphfy the deseription of the method, put
f, = min, ieJ, .. First, the oplimization criteria are sorled
in descending order of importance f, > f, > ... > f, . Ranking
of criteria leads to the lexicographic solution of the problem.
A vector ¥ € X' is a lexicographical solution if the condition
is satisfied for all ¥' € X',

Next, the optimal value for the tirst eriterion 1s deternined :
S, =min f (x). x e 1. The value of the allowable coneession
is determined (/)" +A/f,), incquality is added to the system of
restrictions  f, (x)s S +Af and the optimal value of the
second prionty criterion 1s found. When the procedure 1s done
for each of m ecriteria and the specified concessions are not
exaggerated, the solution 1s considered optimal.

When combining the horizontal method with the method ol
consceulive coneessions, we oblain 4 new method that takes
into account the properties of the combinatorial set and the
features of multi-criteria optimization. We deseribe 1t in this
sequence of steps.

C. Steps for Solving of AfOPLECO

Step I Input the data: elements of the generative set 4 of
Fuclidean combinatorial configurations of permutations.
optimality criteria f; (x) > min, i eJ,  , lincar constraints of
the problem g, (x)24h,, ied,.

Step 2 For cach of the A& constraints we construct a
structurally oriented graph and perform its study according to
the procedure of the horizontal method described above.
obtaining sets 1),,ie J,.

Step 3Findtheset D" =D nD,n..n D, .

Step 4 Sort the criteria by priority f, > f, > ..> f, .

StepSPuti=1, D =D

Step 6 Find £ = min £, (v), x € 1 . Determine the value of
the allowable concession for the current criteria (f, +Af,).

Step 7 For inequality f, (x)< £ +4Af;, apply the procedure
of the horizontal methoed, obtaining a set 1), .

Step 8Put i=i+1, D] =D/~ . If i <k —move on to
step 6, otherwise — the obtained solution for f,(x) is the

solution of the problem, because it satisfies all the previous
admissible concessions.

V.CONCLUSION

The paper defines a multi-objective problem on Luchdean
combinatorial configurations ot permutation. It describes the
properties of combinatorial configurations and their graphs.
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Two-stage approach for solving of multi-objective problem of
lincar Luclidean combinatorial optimization 1is proposed.
Using this method allows you 1o reduce the number of vertices
needed to find the solution of the problem. This is achieved by
sequential analysis of structural graphs by the honzontal
method. This method can be used for other scts of
combinatorial configurations.
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