Комбінаторні конфігурації та їх застосування

13-14 квітня 2012 року

Кіровоград
2012
Міністерство освіти і науки України
Кіровоградський національний технічний університет

Матеріали
Тринадцятого Міжвузівського науково-практичного семінару
“КОМБІНАТОРНІ КОНФІГУРАЦІЇ
ТА ЇХ ЗАСТОСУВАННЯ”

13–14 квітня 2012 року

Кіровоград
2012
Тринадцятий Міжвузівський науково-практичний семінар
КОМБІНАТОРНІ КОНФІГУРАЦІЇ
ТА ЇХ ЗАСТОСУВАННЯ

Кіровоград, 13–14 квітня 2012 року

Засновник семінару — Державна льотна академія України

У збірнику вміщено матеріали Тринадцятого Міжвузівського науково–практичного семінару — ПОВІДОМЛЕННЯ про його роботу, ТЕЗИ 48 наукових доповідей, представлених на семінар.

Редакційна колегія:

Відповідальний редактор
Донець Георгій Панасович — доктор фізико-математичних наук, професор, зав. відділом Інституту кібернетики НАН України

Члени редколегії:
Петренюк А. Я. — доктор фізико-математичних наук, професор
Кіровоградського національного технічного університету

Авраменко О.В. — д.ф.-м.н., завідувач кафедри прикладної математики та інформатики Кіровоградського державного педагогічного університету ім.В. Вінницького

Бялявська Г.Б. — к.ф.-м.н., ст. н.с. Інституту математики та інформатики Академії Наук Молдови

Бондар О. І. — к.ф.-м.н., доцент кафедри фізико-математичних наук Державної льотної академії України

Воблий В.А. — д.ф.-м.н., доцент Московського державного технічного університету ім. Баумана

Волков Ю.І. — д.ф.-м.н., професор, завідувач кафедри математики Кіровоградського державного педагогічного університету ім.В.Вінницького

Гамалій В.Ф. — д.ф.-м.н., професор, завідувач кафедри економічної кібернетики і маркетингу Кіровоградського національного технічного університету

Козін І.В. — д.ф.-м.н., професор кафедри економічної кібернетики Запорізького національного університету
Ревякин А.М — к.ф.-м.н., професор, Московський державний інститут електронної техніки (технічний університет)

Сопронюк Ф.О. — д.ф.-м.н., професор, декан факультету комп’ютерних наук Чернівецького національного університету ім. Ю.Федьковича

Філер З.Ю. — д.т.н., к.ф.-м.н., професор кафедри математики Кіровоградського державного педагогічного університету ім.В. Вінниченка

Шендеровський В.А. — д.ф.-м.н., професор, віце-президент Українського фізичного товариства (м. Київ)

Ясинський В.К. — д.ф.-м.н., професор, завідувач кафедри теорії ймовірності Чернівецького національного університету ім. Й.О.Федьковича

Організаційний комітет:

Голова — Семенюта М.Ф., к.ф.-м.н.

Відповідальний секретар — Петренич В.І., к.ф.-м.н., доцент

Члени оргкомітету:

Гамалій В.Ф. — д.ф.-м.н., професор, зав. кафедри економічної кібернетики і маркетингу КНТУ

Дрєєв О.М. — викладач кафедри програмного забезпечення КНТУ

Кузнєцов С.Т. — ст. викладач кафедри інформаційних технологій КІА НАУ

Настоящий В.А. — к.т.н., професор, завідувач кафедри будівельних дорожніх машин та будівництва КНТУ

Неділько С.М. — к.т.н., професор, ректор КІА НАУ

Петренюк А.Я. — д.ф.-м.н., професор каф. БДМБ КНТУ

Сидоренко В.В. — д.т.н., завідувач кафедри програмного забезпечення КНТУ

Семенюта М.Ф. — к.ф.-м.н., ст. викладач Кіровоградська льотна академія НАУ

Якименко С.М. — к.ф.-м.н., зав. кафедри вищої математики КНТУ
ЗМІСТ

1. Петренюк Л. П., Петренюк А. Я., Семенюта М. Ф. Старість його вдома не тільки. .. 7

2. Агаев А. Г. Гамион Я. К овзвини задаче Штейбера. ... 9

3. Амербаев В. М., Кожухов И. Б., Ревякин А. М., Ярошенко В. А. Представления биквадратдихотоний и регулярные полуприя изотопных преобразований 14

4. Бухман А. И. Об одном алгоритме распознавания сохранения множества понимаемых малого ранга. ... 21

5. Вобляй В. А. Короткое доказательство формулы для числа помеченных п-угольных кастусов. .. 26

6. Волков Ю. И. Прямым серединной мультиномиальной регрессией для корд. 27

7. Вишняченко О. В. Дослідження економічних методів теорії ігор та їх програмна реалізація для прийняття рішень. .. 30

8. Вороненко А. А. О доказательстве бесперерывности буэных функций в элементарном базисе. 37

9. Вороненко А. А. Задача легализации информации. .. 38

10. Вороненко А. А., Кафтан Д. В. О расшифровке монотонных функций счетчиками частотности. 40

11. Даниленко Д. А. Исследование методов сигнального обнаружения вредоносного программного обеспечения в телекоммуникационных системах и сетях. .. 43

12. Давидов В. В. Опис линейных пространств за допомогою комбинаторных конфигураций. 45

13. Држев О. М., Држева Г. М. Метод двостороннего прогнозирования навигационных систем телекоммуникацией мереж. ... 50

14. Смьєч О. О., Смьєч С. М., Олексійчук Ю. Ф. Метод гілок та меж для розв'язування комбінаторних задач знатої обчислення максимального потоку. .. 51

15. Смьєч О. О., Ольховська О. В. Швидкість збіжності ітераційного методу для іронних комбінаторних задач зі стратегіями-перестановками у обох гральніків. 53

16. Смьєч О. О., Тір О. В. Деякі предфраційні перестанові комбінатори комп'ютерні упізнання для перестановок з повторениеми. .. 55

17. Смьєч О. О., Черненко О. О. Алгоритм методу гілок та меж для розв'язування увомної задачі оптимізації дробово-лінійної цільової функції на множині розміщень. 59

18. Смьєч О. О., Черненко О. О., Скачков О. О. Комбінаторна модель задач оптимізації розбіжній виробництва при найменшій економічній цінні. .. 62

19. Епифанов А. С. Методы интерполяции законов функционирования автоматов и модификации методов интерполяции. ... 63

20. Иванов А. В. Централизованная математические діяції .. 66

21. Киселков П. А. Анализ сложности классов функций алгебры логики от трёх и четырёх переменных. 67

22. Коганов Л. М. Геометрические аспекты результатов Рене Лагранжа. .. 70

23. Котин П. В. Эвпононочные метахарактерики для задач дискретной оптимизации в метрических пространствах .. 85

24. Котин П. В., Попова С. И. Эвпоноюзная модель для задачи Штейбера. .. 88

25. Куценов С. Г. О невозможности гарантирования определения радиоактивной пары шаров та 2k-1 проверок среди 2n шаров ... 89

26. Куценов А. А., Смирнов А. А., Мелешко Е. В. Математическая модель и структура схем стирографической системы. ... 91

27. Куценов С. В., Чечена В. С. Методы выделения максимально плоского сгута ... 92

28. Ларинов В. В., Федорова В. С. Критерий бесконечности надструктуры.

МЕТОД ГЛЮКТА МЕЖ ДЛЯ РОЗВ'ЯЗУВАННЯ КОМБІНАТОРНОЇ ЗАДАЧІ ЗНАХОДЖЕННЯ МАКСИМАЛЬНОГО ПОТОКУ

О. О. Ємсьч, Є. М. Ємсьч, Ю. Ф. Олексічук

yemetsli@mail.ru, olexijchuk@gmail.com

Полтавський університет економіки і торгівлі

1. Постановка задачі

Розглянемо задачу знаходження максимального потоку з додатковими комбінаційними обмеженнями. [1]

Нехай дано граф $\Gamma = (V, U)$, де V — множина вершин, U — множина дуг. Дугу, що сполучає вершини v_i та v_j, позначимо u_{ij}.

Означення 1. Транспортною мережею називається орієнтований граф $\Gamma = (V, U)$, в якому кожній з дуг u_{ij} привласнено деяке невід'ємне число $b_{ij} \geq 0$, яке називають пропускною спроможністю дуги. Приймається одна із вершин має лише дуги, що виходять. Така вершина називається джерелом і позначається v_i. Вершина, яка має лише дуги, що входять, називається стоком і позначається v_t.

Означення 2. Потоком називають функцію $w: U \rightarrow R$ з такими властивостями для будь-якої дуги u_{ij}:

1. Значення функції w на дузі u_{ij} не може перевищити пропускну спроможність дуги, тобто $w(u_{ij}) \leq b_{ij}$.

2. Збереження балансу у всіх вершинах, крім стоку й джерела, тобто

$$\sum_{i \in U, s \in U} w(u_{is}) = \sum_{j \in U, t \in U} w(u_{jt}) \quad \forall z, z \neq s, z \neq t.$$

3. Антисиметричність функції w відносно дуги, тобто $w(u_{ij}) = -w(u_{ji})$.

Означення 3. Величиною потоку $|w|$ будемо вважати сму потоків, що виходять із джерела: $\sum_{i \in U, s \in U} w(u_{is}) = |w|$.

Потоком по дузі u_{ij} будемо називати число $w(u_{ij})$. Позначимо потік по дузі u_{ij} через y_{ij}.

Накладемо додаткові обмеження. Нехай потік по дугах $u_{ij} \in U' \subseteq U$ може приймати значення, які не перевищують число $x_{ij} = g_i \in G$, тобто $w(u_{ij}) \leq x_{ij}$, де $G = \{g_1, g_2, ..., g_n\}$ — деяка мультимножина; причому вектор
утворений із \(x_y \) є розміщенням [2] елементів із \(G \), тобто \(x = (x_{i_1}, x_{i_2}, \ldots, x_{i_k}) \in E_m^k(G) \).

Задача полягає у знаходженні потоку, величина \(|w| \) якого максимальна, та відповідних значень \(x_y, y_y \).

Математичною моделлю розглянутої задачі є задача евклідової комбінаційної оптимізації на розміщеннях, для розв'язання якої відомі методи (див., наприклад, [3-4]). Розглянемо інший метод розв'язання задачі.

2. Метод гілок та меж

Відкінемо комбінаційні умови та отримаємо класичну задачу знаходження максимального потоку, для розв'язання якої відомі поліноміальні методи [5]; нехай максимальний потік рівний \(|w'\). Очевидно, що розв'язок початкової задачі не перевищує \(|w'| \). При фіксованих значеннях \(x_y \) класичну задачу знаходження максимального потоку можна отримати, ввівши нові пропускні спроможності \(b'_y = \min\{b_y, x_y\} \).

Пронумеруємо всі дуги, на які накладені комбінаційні обмеження: \(u_1, u_2, \ldots, u_s \). За початкове рекордне значення можна взяти деякий наближений розв'язок задачі.

Початковим етапом будемо вважати задачу без комбінаційних обмежень, оціною — \(|w'| \). Галуження будемо проводити наступним чином: візьмемо \(u_i \) і покладемо відповідне значення \(x_i \) почергово рівним усім допустимим різним значенням з \(G \). Оцінкою буде розв'язок класичної задачі з пропускними спроможностями \(b'_y = \min\{b_y, x_y\} \). Якщо оцінка перевищує рекордне значення, то продовжуємо галуження, інакше — відсікаємо вершину.

Якщо \(i = k \), то отримаємо допустимий розв'язок вихідної задачі. Якщо він перевищує рекордне значення, то пройдемо його за новий рекорд.

Таким чином змінюючи \(i = 1, \ldots, k \) та використовуючи пошук в глибину, знаходиться оптимальний розв'язок вихідної задачі.

Зачування. На кожному етапі не обов'язково розв'язувати класичну задачу знаходження оптимального потоку. Якщо значення \(y_y \) у попередньому розв'язку не перевищує накладеного на нього комбінаційного обмеження \(x_y \), то розв'язок задачі не змінюється.

Висновки

В роботі розглянута комбінаційна задача знаходження максимального потоку та метод гілок та меж для її розв'язання. Актуальним є проведення обчислювальних експериментів та порівняння результатів з іншими методами.
ШВІДКІСТЬ ЗБІЖНОСТІ ІТЕРАЦІЙНОГО МЕТОДУ ДЛЯ ІГРОВИХ КОМБІНАТОРНИХ ЗАДАЧ ЗІ СТРАТЕГІЯМИ-ПЕРЕСТАВЛЕННЯМИ У ОБОХ ГРАВЦІВ
Ємець О.О., Оліховська О.В.
contacts@informatics.org.ua
Полтавський університет економіки і торгівлі

В доповіді пропонується оцінка швидкості збіжності ітераційного методу розв'язання комбінаторних оптимізаційних задач ігрового типу з обмеженнями, що визначені переставленнями на стратегії двох гравців.

В [1,2] розглядається задача комбінаторної оптимізації ігрового типу на множині переставлень та її математичну модель. В ній комбінаторні обмеження накладаються на стратегії обох гравців. В моделі розглядається платіжна матриця $A = (a_{ij})$ вимірності $m \times l$, елемент a_{ij} якої показує перевищення (різницю) прибутків другого гравця в порівнянні з первим гравцем. На стратегії обох гравців накладаються обмеження, що визначаються переставленнями, тобто перший граець має мішану стратегію, що є переставленнями ймовірностей, які є елементами мультиномнії P', а другий граець має мішану стратегію, що є переставленнями ймовірностей, які є елементами мультиномнії P''.

Складемо нову платіжну матрицю $A = (a_{ij})$ вимірності $k \times n$, де $k = m!, n = l!$. Платіж a_{ij} в даній матриці нехай обчислюється так:

$$a_{ij} = \sum_{i=1}^{k} \sum_{j=1}^{n} a_{ij} x_{ij} y_{ij}, \forall i \in J_k = \{1,2,...,k\}, \forall j \in J_n, \text{ де } i \text{ номер відповідного вектора}$$