
ПОЛТАВСЬКИЙ УНІВЕРСИТЕТ ЕКОНОМІКИ І ТОРГІВЛІ

Навчально-науковий інститут денної освіти

Форма навчання денна

Кафедра комп’ютерних наук та інформаційних технологій

Допускається до захисту

Завідувач кафедри

________Олена ОЛЬХОВСЬКА
 (підпис)

 « » 202_ р.

КВАЛІФІКАЦІЙНА РОБОТА

на тему

ЗАСТОСУНОК ДЛЯ КЕРУВАННЯ РОБОЧИМ ЧАСОМ І

ПРОДУКТИВНІСТЮ З ФУНКЦІЄЮ АВТОМАТИЗОВАНОГО ЗВІТУВАННЯ

 зі спеціальності 122 Комп’ютерні науки

 освітня програма «Комп’ютерні науки»

 ступеня магістра

 Виконавець роботи Шустваль Альона Станіславівна

 « » 202_ р.
 (підпис)

Науковий керівник доцент, к.ф.-м.н. Черненко О. О.

 « » 202_ р.
 (підпис)

Рецензент

ПОЛТАВА 2025

2

РЕФЕРАТ

 Записка: 81 с., 13 рис., 2 таблиці, 1 додаток, 12 джерел.

REACT, TYPESCRIPT, SQLITE, КЕРУВАННЯ ЧАСОМ, POMODORO

Об’єктом розробки є десктопний застосунок для керування робочим часом і

продуктивністю з функцією автоматизованого звітування.

Предметом розробки є програмна реалізація локальної системи обліку часу та

завдань з аналітикою і експортом звітів без залучення хмарної інфраструктури.

Метою роботи є створення кросплатформеного офлайн-застосунку, що

забезпечує планування завдань, фіксацію робочих інтервалів (у т.ч. за методикою

Pomodoro), побудову візуальної аналітики та формування звітів у форматах

PDF/CSV.

Результатом роботи став застосунок Worktime, реалізований на зв’язці Tauri

(Rust) + React/TypeScript з локальною базою SQLite. У межах архітектури

передбачено: WebView-інтерфейс (React 18, React Router, TanStack Query), бекенд-

команди Tauri/Rust із параметризованими SQL-запитами, модель даних (areas,

projects, tasks, subtasks, tags, task_tags, time_sessions) з індексами та зовнішніми

ключами, а також політики безпеки (whitelist команд, ізоляція WebView, CSP).

Застосунок підтримує повний цикл індивідуальної продуктивності: створення

та організацію завдань (проєкти, теги, підзавдання), запуск таймера й Pomodoro,

журнал сесій і фільтри за періодами, інтерактивні звіти (динаміка за днями,

розподіл за проєктами/тегами, показники виконання плану) та експорт у CSV і PDF

(шаблони jsPDF + autotable). Передбачено темну/світлу тему, генерацію тестових

даних та кросплатформену збірку інсталяторів (Windows/macOS/Linux).

Інтерфейс Worktime містить основні розділи:

• «Усі завдання» - список із пошуком, пріоритетами й підзавданнями;

• «Таймер» - запуск звичайних сесій і Pomodoro з прив’язкою до завдання;

• «Звіти» - агрегована аналітика, графіки та експорт;

• «Налаштування» - керування проєктами і тегами.

Для перевірки якості реалізовано автоматизований тестовий раннер (Node.js,

3

ESM), який виконує функціональні «саніті»-перевірки структури, залежностей і

конфігурації Tauri, базові нефункціональні метрики (розмір і кількість файлів),

формує консольний підсумок і HTML-звіт. Результати підтвердили коректність

архітектури та готовність до подальшого розширення тестового пакета (компіляція

TypeScript, лінтинг, інтеграційні UI-сценарії).

Розроблений застосунок забезпечує приватність (локальне зберігання),

автономність (офлайн-режим), високу швидкодію (Rust/Tauri) і зручність роботи з

даними (візуалізація та експорт), що робить його практичним інструментом для

фахівців, студентів і невеликих команд, які потребують прозорого обліку часу й

регулярної звітності.

4

ЗМІСТ

ВСТУП ... 6

1. ПОСТАНОВКА ЗАДАЧІ ... 8

2. ІНФОРМАЦІЙНИЙ ОГЛЯД ... 10

2.1. Методики керування часом і продуктивністю ... 10

2.2. Метрики та критерії оцінки продуктивності .. 12

2.3. Огляд існуючих інструментів і сервісів .. 14

2.4. Порівняльний аналіз та обґрунтування вибору підходу 18

3. ТЕОРЕТИЧНА ЧАСТИНА.. 20

3.1. Архітектура десктопного застосунку на Tauri ... 20

3.2. Модель даних та діаграма .. 23

3.3. Підсистема автоматизованого звітування: моделі конфігурацій 26

3.4. Алгоритми обліку часу: таймер, Помодоро, обробка edge-cases 29

4. ПРАКТИЧНА ЧАСТИНА ... 32

4.1. Вибір технологій і обґрунтування ... 32

4.2. Реалізація фронтенду: структура, маршрутизація, стан, ключові компоненти .. 35

4.3. Реалізація бекенду Tauri/Rust: команди, SQL-плагін, політики безпеки 39

4.4. Реалізація шару доступу до БД: схема, індекси, транзакції, тригери 45

4.5. Тестування якості продукту ... 48

4.6. Інструкція для користувача .. 51

ВИСНОВКИ .. 58

СПИСОК ІНФОРМАЦІЙНИХ ДЖЕРЕЛ ... 60

ДОДАТОК А. .. 61

5

СПИСОК УМОВНИХ ПОЗНАЧЕННЬ, СИМВОЛІВ, СКОРОЧЕНЬ,

ТЕРМІНІВ

Умовні позначення, символи,

скорочення, терміни

Пояснення умовних позначень, скорочень,

символів

Worktime Десктопний застосунок для керування

завданнями та робочим часом з

автоматизованою звітністю.

Tauri Фреймворк для кросплатформених десктопних

застосунків: WebView (UI) + Rust (бекенд).

WebView Вбудований рендерер HTML/CSS/JS усередині

десктопного застосунку.

Rust Мова програмування для бекенду Tauri з

фокусом на безпеці пам’яті та продуктивності.

React Бібліотека для побудови інтерфейсу

користувача на основі компонентів.

TypeScript (TS) Типізована надбудова над JavaScript з

перевіркою типів під час компіляції.

SQLite Вбудована реляційна СУБД у вигляді одного

файлу; підтримує ACID-транзакції.

React Query (TanStack Query) Кешування серверного стану, робота з

запитами/мутаціями, інвалідація кешу.

IPC Inter-Process Communication; виклики з

фронтенду до команд Rust у Tauri.

ER-модель (PK/FK) Модель «сутність–зв’язок»; PK - первинний

ключ, FK - зовнішній ключ.

Pomodoro Методика інтервальної роботи (робота/перерва)

з автоматичним обліком сесій.

Сесія часу (duration_sec) Запис інтервалу роботи:

початок/кінець/тривалість у секундах, джерело.

6

ВСТУП

У сучасних умовах зростає потреба у прозорому обліку робочого часу та

вимірюванні особистої продуктивності. Фахівці, студенти й невеликі команди

вирішують схожі задачі: планувати роботу, фіксувати її тривалість, своєчасно

підбивати підсумки й ділитися звітами. Більшість популярних сервісів роблять це

через хмару, що тягне за собою питання конфіденційності, підписок та залежності

від інтернету. Тому актуальною є розробка легкого офлайн-рішення з локальним

зберіганням даних і зручною звітністю «в один клік».

Робота присвячена створенню десктопного застосунку Worktime для

керування завданнями та відстеження робочого часу з функцією автоматизованого

звітування. Рішення поєднує планування (проєкти, теги, підзавдання), тайм-трекінг

(таймер, Помодоро, історія сесій), аналітику (графіки, метрики) та експорт звітів

(CSV/PDF). Технічно застосунок побудовано на стеку Tauri (Rust) + React

(TypeScript) + SQLite, що забезпечує кросплатформеність, високу продуктивність,

локальне зберігання даних і роботу без мережі. Підсистема авто-звітів формує

підсумкові документи за визначеним періодом і зберігає їх у вибраному каталозі,

що зменшує рутинні дії користувача.

Мета роботи - алгоритмізація, проєктування та розробка десктопного

застосунку для керування робочим часом і продуктивністю з підтримкою

автоматизованого формування звітів.

Завдання роботи:

 проаналізувати сучасні методики керування часом та продуктивністю

(Помодоро, time-blocking) і визначити релевантні метрики (загальний час,

середній час на задачу, виконання дедлайнів, коефіцієнт фокусу);

 сформувати вимоги до системи (функціональні/нефункціональні,

конфіденційність, офлайн-режим, UX);

 спроєктувати архітектуру застосунку на базі Tauri/React з розмежуванням

фронтенд/бекенд шарів і безпечним IPC;

 розробити модель даних (areas, projects, tasks, subtasks, tags, task_tags,

time_sessions), схему БД та індекси;

7

 реалізувати модулі: менеджер завдань; трекінг часу (таймер, Помодоро,

історія сесій); генерація CSV/PDF; планувальник авто-звітів за періодами;

 забезпечити безпеку й надійність: параметризовані запити, валідація IPC,

увімкнені зовнішні ключі, транзакції/тригери, базові політики

CSP/Capabilities;

 провести тестування (unit, integration, e2e) та оцінку продуктивності на

реальних сценаріях використання;

 підготувати інструкцію користувача (встановлення, перші кроки,

експорт/автозвіти, бекап/відновлення БД).

Об’єкт дослідження - процес організації та обліку робочого часу користувача

з подальшим формуванням звітності.

Предмет дослідження - методи алгоритмізації, проєктування та реалізації

десктопних застосунків для тайм-трекінгу й автоматизованого звітування з

локальним зберіганням даних.

Практичне значення роботи полягає у створенні самодостатнього інструменту

Worktime, який можна використовувати без інтернету й сторонніх сервісів.

Застосунок придатний для фрілансерів, невеликих команд та студентів: він

допомагає планувати роботу, точно фіксувати витрачений час, отримувати наочну

аналітику та автоматично формувати звіти за розкладом у зручних форматах

(CSV/PDF), що спрощує облік і підвищує дисципліну виконання задач.

8

1. ПОСТАНОВКА ЗАДАЧІ

Мета проєкту - створити кросплатформений десктопний застосунок Worktime

для планування завдань і відстеження робочого часу з підтримкою

автоматизованого формування звітів. Рішення має працювати офлайн, зберігати

дані локально (SQLite), бути швидким, зручним і безпечним.

Основні завдання:

1. Аналіз предметної області

- узагальнити методики керування часом (Pomodoro, time-blocking, GTD);

- визначити релевантні метрики продуктивності: загальний час, середній час

на задачу, виконання дедлайнів, коефіцієнт фокусу.

2. Архітектура системи

- спроєктувати шарову модель на базі Tauri (Rust) + React (TypeScript) з

безпечним IPC;

- описати політики безпеки (capabilities/CSP) та принципи роботи офлайн.

3. Модель даних і БД

- сформувати схему (areas, projects, tasks, subtasks, tags, task_tags,

time_sessions) з індексами та зв’язками;

- передбачити транзакції, зовнішні ключі, тригери, бекап/відновлення.

4. Керування завданнями

- реалізувати CRUD, пріоритети, дедлайни, підзавдання, теги, фільтри й

пошук;

- додати масові операції та перегляди «Сьогодні/Наступні/Усі».

5. Трекінг часу

- зробити таймер і Помодоро з автоматичним логуванням сесій;

- підтримати ручні сесії, редагування, обробку edge-cases

(сон/перезапуск/TZ/подвійний старт), коректний підрахунок тривалості.

6. Автоматизоване звітування

- спроєктувати конфігурації звітів (період, охоплення, формат);

- реалізувати планувальник і генерацію CSV/PDF з шаблонами та файловим

9

виводом;

- додати іменування файлів і правила збереження.

7. Аналітика та візуалізація

- розрахувати ключові метрики, побудувати графіки за днями/тижнями,

проєктами та тегами;

- забезпечити порівняння періодів і експорт результатів.

8. Якість, безпека та супровід

- застосувати параметризовані запити, валідацію IPC, увімкнути foreign keys;

- провести unit/integration/e2e-тести, оцінити продуктивність і UX;

- підготувати інсталятори для Windows/macOS/Linux та інструкцію

користувача (встановлення, перші кроки, бекап/відновлення,

експорт/автозвіти).

Ключові вимоги до застосунку: офлайн-робота й локальна БД,

кросплатформеність, приватність даних, висока швидкодія, простий інтерфейс,

надійність підсистеми авто-звітів та можливість подальшого розширення

(інтеграції, синхронізація).

10

2. ІНФОРМАЦІЙНИЙ ОГЛЯД

2.1. Методики керування часом і продуктивністю

Ефективне керування часом ґрунтується на системному плануванні

діяльності, впорядкуванні завдань за значущістю, організації фокус-періодів роботи

та регулярному підбитті підсумків. Нижче подано огляд базових методик тайм-

менеджменту, які набули широкого практичного застосування та можуть бути

імплементовані в програмні засоби обліку часу.

GTD (Getting Things Done). Методика передбачає повний «вивантаження»

зобов’язань із пам’яті в надійне зовнішнє сховище та проходження циклу: фіксація

→ прояснення («наступна дія») → організація (списки/контексти/проєкти) →

перегляд → виконання. Переваги: зниження когнітивного навантаження, прозорість

портфеля завдань. Обмеження: потребує дисципліни щотижневого огляду. [1]

Техніка Помодоро. Робота здійснюється у фокус-інтервалах (класично 25 хв)

з короткими перервами (5 хв) і довшою паузою після кожних чотирьох циклів. Мета

- підтримання високої концентрації та вимірюваності витрат часу. Переваги:

зменшення прокрастинації, формування сталого темпу. Обмеження: не завжди

придатна для довгих творчих сесій без розривів.

Time blocking і timeboxing.

Time blocking - календарне резервування блоків під категорії активностей

(глибока робота, комунікації, рутина).

Timeboxing - жорстке обмеження часу на конкретне завдання.

Обидва підходи зменшують ефект Паркінсона (розширення роботи до

доступного часу) та сприяють реалістичному плануванню.

Матриця Ейзенхауера. Класифікація завдань за осями

«важливість/терміновість» із відповідними стратегіями: виконати негайно

(важливе-термінове), запланувати (важливе-нетермінове), делегувати (нетермінове-

неважливе), відмовитися (неважливе-нетермінове). Методика забезпечує

пріоритизацію та усунення «пожежного» стилю роботи.

Принцип Парето (80/20). Орієнтація на невелику частку завдань, що

11

генерують основну частину результату. Дає основу для скорочення

низькорентабельних активностей і концентрації ресурсів на ключових напрямах.

Deep Work. Практика тривалих безперервних періодів зосередженої

інтелектуальної праці з мінімізацією відволікань. Передбачає планування «вікон»

глибокої роботи, технічні та поведінкові бар’єри (режим «Не турбувати»,

відключення сповіщень) і пост-аналіз результатів. Підходить для складних завдань,

що вимагають високої когнітивної віддачі.

Batching і мінімізація перемикань контексту. Групування однотипних

активностей у «пакети» (електронна пошта, дрібні запити, технічні тікети) зі

скороченням частоти переключень. Застосування лімітів WIP (Work-In-Progress)

зменшує втрати продуктивності на перемикання.

Personal Kanban. Візуальна модель потоку робіт із колонками «Заплановано -

У роботі - Виконано» та лімітами WIP. Підтримує прозорість завантаження,

керування вузькими місцями та поступовий прогрес.

Метод Айві Лі. Щоденне визначення до шести найважливіших завдань

наступного дня із ранжуванням та послідовним виконанням. Забезпечує чіткий

старт дня та зниження хаотичності.

Підхід «Eat That Frog». Пріоритетне виконання найскладнішої/найменш

приємної, але важливої задачі на початку робочого дня як спосіб подолання

відкладення та формування позитивної динаміки.

SMART-цілі та OKR. Формалізація цілей: конкретність, вимірюваність,

досяжність, релевантність, обмеження в часі (SMART); постановка цілей і

ключових результатів (OKR), що підлягають об’єктивній перевірці. Сприяє

коректному добору завдань і метрик успіху.

Регулярні огляди (review). Щоденні, щотижневі та щомісячні підсумки з

оновленням планів, аналізом перешкод і корекцією пріоритетів. Дозволяють

підтримувати актуальність системи та уникати накопичення «боргу планування».

Відновлення ресурсів. Режим сну, перерви між блоками, фізична активність і

гігієна робочого місця розглядаються як необхідні умови підтримання стійкої

продуктивності у середньо- та довгостроковій перспективі.

12

Наведені методики утворюють узгоджений каркас керування часом: фіксація

й структуризація зобов’язань (GTD, Personal Kanban), пріоритизація (Ейзенхауер,

Парето, «Eat That Frog»), планування та дозування зусиль (time blocking/boxing,

Помодоро, Deep Work), контроль виконання через вимірні цілі (SMART/OKR) і

регулярні огляди. У межах даної роботи ці підходи слугують методологічною

основою для функцій застосунку: моделі завдань і проєктів, механізмів

пріоритизації та фільтрації, таймера й обліку сесій, а також формування звітності за

визначеними метриками.

2.2. Метрики та критерії оцінки продуктивності

Мета блоку метрик - дати чітку картину витрат часу, темпу виконання завдань

і дисципліни щодо дедлайнів. Дані беруться із записів сесій роботи (time_sessions)

та станів завдань (tasks) за обраний період (день, тиждень, місяць) з можливістю

групування за проєктами й тегами.

Основні метрики

1. Загальний час - сума тривалостей усіх завершених сесій у періоді (год).

2. Фокус-час - сума сесій, що були запущені таймером або в режимі Помодоро.

3. Кількість сесій / середня тривалість сесії - показує, наскільки фрагментованим

був робочий день.

4. Кількість завершених завдань - скільки задач переведено у стан done за

період.

5. Частка завершених (Completion Rate) - відсоток завершених від усіх

створених/запланованих у періоді.

6. Середній час на задачу - середня сума сесій, прив’язаних до однієї виконаної

задачі.

7. Дотримання дедлайнів (Deadline Hit Rate) - відсоток задач із дедлайном,

виконаних не пізніше зазначеної дати.

8. Рівень прострочення (Overdue Rate) - частка задач із дедлайном, що лишилися

невиконаними на момент звіту.

13

9. Продуктивність (Throughput) - скільки задач закривається в середньому за

день/тиждень у вибраному періоді.

10. Коефіцієнт фокусу - частка фокус-часу в загальних витратах (для Помодоро:

фокус-час / (фокус-час + перерви)).

11. Структура часу - розподіл витрачених годин за проєктами та тегами у

відсотках.

12. Опціонально:

o План/факт - порівняння фактичних годин (або циклів Помодоро) із

запланованими.

o Утилізація - фокус-час відносно запланованого робочого часу, якщо

ведеться календар.

Критерії оцінки (орієнтовні пороги для авто-звітів)

 Дедлайни: виконано вчасно ≥ 90% задач із дедлайном.

 Прострочення: не більше 10% задач із простроченими термінами.

 Фокус-час: досягнення індивідуальної цілі (наприклад, 4–6 годин на день або

встановлене значення користувача).

 Продуктивність: не нижче базового рівня попереднього періоду (порівняння

«період до періоду»).

 Середній час на задачу: стабільний або з тенденцією до зниження для типових

задач.

 Структура часу: не менше 70% часу припадає на пріоритетні проєкти/теги

(налаштовується).

У звітах показники позначаються як «виконано», «зона ризику» або «не

виконано» залежно від того, чи досягнуто порога. Пороги користувач може

змінювати під власні цілі. [2]

Примітки до обчислень

 У розрахунки включаються лише завершені сесії; паралельні або нульові сесії

відкидаються.

 Сесії, що перетинають календарні межі, розподіляються між днями

пропорційно часу.

14

 Час зберігається в UTC, у звіті відображається у локальному часовому поясі.

 Округлення в підсумках - до хвилин, у відсотках - до цілих значень.

Такий набір метрик достатній для щоденних, тижневих і місячних авто-звітів

і дає зрозумілу основу для відстеження динаміки продуктивності користувача.

2.3. Огляд існуючих інструментів і сервісів

Toggl Track (див. рис. 2.1)

Хмарний сервіс для обліку часу з акцентом на простоту запуску таймера та

подальшу аналітику. Підтримується робота з проєктами, клієнтами й тегами,

доступні веб-версія, мобільні й десктопні додатки. Звіти формуються за періодами з

можливістю фільтрації та експорту у табличні формати. Інструмент орієнтований на

індивідуальне використання й роботу в командах, коли потрібні сумісні проєкти та

узагальнені підсумки.

Рисунок 2.1 – Інтерфейс «Toggl Track»

15

Clockify (див. рис. 2.2)

Система тайм-трекінгу з модулями таймера, табелів і звітів. Підтримуються

облік за проєктами/задачами, бюджетування та відмітка «billable». Інтерфейс

побудовано навколо щоденного/тижневого планування та швидкої фіксації витрат

часу, що зручно для невеликих команд і фрилансерів. Надається широкий набір

інтеграцій із популярними сервісами керування задачами.

Рисунок 2.2 – Інтерфейс «Clockify»

RescueTime

Автоматичний трекер активності, що фіксує використання застосунків і веб-

сайтів без ручного запуску таймера. Сервіс надає категоризацію активностей,

показники зосередженості й часу відволікань та агрегує ці дані в щоденні та

щотижневі підсумки. Підхід зручний для аналізу звичок і визначення «поглиначів

часу», однак потребує уваги до налаштувань приватності.

16

ManicTime (див. рис. 2.3)

Десктопний інструмент із локальним зберіганням даних і автоматичним

трекінгом. Система будує часові лінії використання застосунків і документів,

дозволяє редагувати інтервали та формувати звіти без підключення до мережі.

Підходить користувачам, для яких важливі офлайн-режим і повний контроль над

базою даних на власному пристрої.

Рисунок 2.3 – Інтерфейс «ManicTime»

ActivityWatch

Відкрите кросплатформне рішення з локальним зберіганням і модульною

архітектурою «watchers». Система збирає події з різних джерел (активні вікна,

введення з клавіатури тощо) та надає веб-інтерфейс для перегляду часових ліній і

17

зведень. Основний акцент зроблено на приватність і прозорість даних, що важливо

для індивідуальних користувачів і дослідницьких кейсів.

Kimai (див. рис. 2.4)

Самохостингова веб-система обліку часу з підтримкою багатьох користувачів,

проєктів, тарифних ставок і виставлення рахунків. Система розгортається на

власному сервері, що дозволяє інтегрувати її в внутрішню інфраструктуру

організації. Підтримуються плагіни та експорти, завдяки чому Kimai придатна для

невеликих компаній і команд, які потребують контролю доступу й даних.

Рисунок 2.4 – Інтерфейс «Kimai»

Timewarrior

Консольний інструмент для обліку інтервалів часу з підтримкою тегів,

фільтрів і зведень. Часто використовується разом із Taskwarrior для зв’язування

задач із записами часу. Рішення орієнтоване на користувачів, які працюють у

терміналі, цінують просту автоматизацію та інтеграцію з власними скриптами.

18

Представлені рішення охоплюють повний спектр сценаріїв: від хмарних

сервісів для командної роботи та виставлення рахунків до локальних і відкритих

інструментів із пріоритетом приватності. Для подальшого проєктування застосунку

Worktime релевантними є дві вимоги, які не завжди сумісні у готових продуктах:

офлайн-режим із локальною базою даних і зручна звітність, зокрема автоматизоване

формування підсумків за періодами. Саме ці властивості визначають архітектурні

рішення й вибір технологій у наступних розділах.

2.4. Порівняльний аналіз та обґрунтування вибору підходу

Для вибору архітектури та функціональних акцентів застосунку

проаналізовано інструменти з підрозділу 2.3 за однаковими критеріями: тип

розгортання, наявність офлайн-режиму та локального зберігання, підтримка

автоматичного трекінгу активності, модель «завдання/проєкти», автоматизовані

звіти, можливості експорту та рівень контролю над даними. Узагальнені результати

наведено в табл. 2.1.

Таблиця 2.1 - Порівняльна характеристика інструментів тайм-трекінгу

Інструмент
Тип

розгортання
Офлайн

Локальне

зберігання

Авто-

трекінг

активності

Завдання/проєкти
Автоматизовані

звіти

Контроль над

даними

Toggl Track
Хмарний

сервіс
Ні Ні Ні Так

Так (розсилання

e-mail)

Хмара

постачальника

Clockify
Хмарний

сервіс
Ні Ні Ні Так

Так (розсилання

e-mail)

Хмара

постачальника

Harvest
Хмарний

сервіс
Ні Ні Ні Так

Так (звітність, e-

mail)

Хмара

постачальника

RescueTime Хмара + агент Обмежено Обмежено Так Обмежено Так (веб/e-mail)
Хмара

постачальника

ManicTime
Десктоп

(локально)
Так Так Так Обмежено Так (локально)

На пристрої

користувача

ActivityWatch
Локально

(відкрите ПЗ)
Так Так Так Ні

Обмежено

(огляди)

На пристрої

користувача

Kimai
Самохостинг

(веб)
Ні

Так (on-

premise)
Ні Так Так

Інфраструктура

організації

Timewarrior
CLI

(локально)
Так Так Ні Через теги

Обмежено

(зведення)

На пристрої

користувача

19

Порівняння показує, що хмарні сервіси на кшталт Toggl Track, Clockify і

Harvest забезпечують зрілу командну звітність і автоматичні розсилки, однак

вимагають зберігання даних у хмарі та постійного мережевого доступу.

Інструменти автоматичного трекінгу (RescueTime) зручні для аналізу звичок, але

також покладаються на хмарну обробку. Локальні рішення (ManicTime,

ActivityWatch, Timewarrior) надають автономність і повний контроль над базою

даних, однак або не мають повної моделі «завдання/проєкти», або орієнтовані на

технічних користувачів і не містять зручної «коробкової» автоматизації звітів.

Самохостингові системи (Kimai) закривають організаційні потреби, проте

залишають залежність від серверної інфраструктури.

З огляду на цілі роботи - офлайн-режим, локальне зберігання, поєднання

планування завдань і трекінгу, а також автоматизоване формування підсумкових

звітів - доцільним є підхід локального десктопного застосунку. Обрана реалізація

Worktime (Tauri + React, SQLite) поєднує сильні сторони двох світів: автономність і

приватність локальних рішень та зручність регулярної звітності, яка формується без

залежності від хмари. Компромісом є відсутність «із коробки» командної співпраці

та централізованих інтеграцій; ці можливості можуть бути додані як опційні модулі

синхронізації або самохостингові компоненти у подальшому розвитку. Такий вибір

узгоджується з вимогами до конфіденційності, продуктивності й простоти

експлуатації, визначеними у розділі 1, і визначає архітектурні рішення, що подані в

розділах 3–4.

20

3. ТЕОРЕТИЧНА ЧАСТИНА

3.1. Архітектура десктопного застосунку на Tauri

Архітектура Worktime побудована за моделлю «легкий фронтенд у WebView

+ нативний бекенд на Rust», яку реалізує фреймворк Tauri. Інтерфейс користувача

виконано на React/TypeScript і рендериться у вбудованому WebView, тоді як бекенд

виконує системні операції, працює з локальною базою даних SQLite і забезпечує

міжпроцесну взаємодію. Така організація поєднує переваги сучасного веб-UI з

нативною продуктивністю та контрольованим доступом до ресурсів ОС (див. рис.

3.1).

Рисунок 3.1 - Загальна архітектура застосунку (фізична структура)

21

Фізична структура проєкту відображає поділ на два ізольовані середовища.

Каталог src/ містить фронтенд: точки входу (main.tsx, App.tsx), компоненти

інтерфейсу, стилі та бібліотеку прикладної логіки (src/lib), де інкапсульовано доступ

до даних, типи, алгоритми звітності та допоміжні утиліти. Каталог src-tauri/ містить

бекенд на Rust із конфігурацією Tauri (tauri.conf.json), оголошеннями дозволів

(capabilities) і кодом команд/плагінів, що викликаються з фронтенду. Під час

розробки фронтенд запускається власним dev-сервером, а Tauri підхоплює його як

джерело вмісту WebView; у виробничій збірці фронтенд компілюється, статичні

артефакти вбудовуються в застосунок, а Tauri формує інсталятор відповідно до

цільової ОС. База даних зберігається локально у файлі worktime.db у стандартному

каталозі даних користувача, що забезпечує офлайн-режим і повний контроль над

інформацією. [3]

Логічна структура складається з чотирьох шарів, які утворюють зрозумілий

потік даних. На рівні презентації інтерфейс реалізовано як модульну систему

сторінок і компонентів: навігація, списки завдань, таймер, розділ звітів і

налаштування. Стан отримання даних організовано через React Query, що надає

кешування, інвалідацію та повторні спроби при збої, зменшуючи кількість звернень

до бекенду і прискорюючи відгук. Прикладний шар представлено сервісними

модулями lib/*, які формують запити, нормалізують дані, застосовують правила

бізнес-логіки (наприклад, обрахунок тривалості сесій або агрегацію часу за

проєктами) та надають інтерфейси для компонентів. Шар доступу до даних реалізує

патерн «репозиторій»: у браузерному режимі повертаються тестові дані, у

нативному - виклики спрямовуються через IPC у бекенд. Інфраструктурний шар

містить Tauri-плагін для SQLite і команди Rust, які виконують параметризовані

SQL-операції, забезпечують транзакційність і дотримання зовнішніх ключів.

Міжпроцесна взаємодія побудована на явному виклику команд і плагінів.

Фронтенд ініціює операції (отримання списку завдань, старт або зупинка сесії,

запис часу) через IPC; у бекенді виконуються SQL-запити, після чого результат

серіалізується та повертається у WebView. Усі звернення до бази даних

22

здійснюються параметризовано, що виключає ін’єкції, а також у межах чітко

дозволених можливостей, визначених у конфігурації Tauri. За потреби послідовні

зміни (наприклад, створення завдання і прив’язка тегів) виконуються в транзакції,

що гарантує атомарність і цілісність.

Безпекова модель базується на принципі «мінімально необхідних прав». У

конфігурації Tauri вмикаються лише ті можливості, які справді потрібні застосунку

(доступ до файлової системи у власному сховищі, робота з локальною БД, системні

діалоги). Frontend ізольовано від безпосереднього доступу до системних API: будь-

яка операція поза межами WebView потребує явного виклику бекенд-команди.

Додатково застосовано політику Content Security Policy для мінімізації XSS-ризиків,

а також перевірки вхідних параметрів на межі IPC. Така схема зменшує площу

атаки й полегшує аудит взаємодій.

Типовий потік даних демонструє взаємодію шарів. Користувач запускає

таймер, інтерфейс фіксує вибір задачі, модуль часу формує виклик на початок сесії,

а бекенд створює запис у таблиці time_sessions із позначкою джерела та часовою

міткою. Після зупинки таймера бекенд обчислює тривалість, оновлює запис, а

фронтенд інвалідовує пов’язані запити, що призводить до автоматичного оновлення

графіків і зведень. Аналогічно працюють операції зі створенням завдань,

призначенням тегів і генерацією зведених даних для звітів. [4]

Підтримка автоматизованого звітування реалізується як сервіс бекенда, що

виконується у фоні разом із основним циклом подій Tauri. Планувальник

періодично перевіряє конфігурації звітів, вибирає ті, що потребують формування, і

ініціює побудову даних за заданими фільтрами. На етапі рендерингу

використовуються наявні модулі формування таблиць і діаграм; підсумковий

документ зберігається у вибраному каталозі з іменуванням за шаблоном. Така

інтеграція не потребує мережевої інфраструктури, зберігає автономність і не змінює

модель доступу до даних.

З погляду експлуатаційних характеристик архітектура забезпечує невеликий

розмір інсталятора, швидкий старт і стабільну роботу без інтернет-з’єднання.

Кешування на рівні клієнта, індекси в SQLite і параметризовані запити знижують

23

затримки при навігації та фільтрації. Обслуговування зводиться до оновлення

застосунку стандартними засобами платформи та резервного копіювання файлу

бази даних; міграції схеми виконуються вбудованими скриптами

створення/оновлення таблиць під час ініціалізації.

Підсумовуючи, фізична структура (чіткий поділ на фронтенд і бекенд у межах

одного пакета) та логічна модель із шарами UI, прикладної логіки, репозиторіїв і

інфраструктури створюють передбачувану та керовану систему. Вона відповідає

вимогам офлайн-роботи, локального зберігання та автоматизованого звітування, а

також залишає простір для подальших удосконалень - від додаткових інтеграцій до

розширення механізмів безпеки і синхронізації.

3.2. Модель даних та діаграма

Модель даних застосунку Worktime спроєктовано для локального зберігання у

файлі SQLite з акцентом на простоту, цілісність і підтримку ключових сценаріїв:

ведення завдань, облік робочих сесій, тегування та формування звітів. Схема

нормалізована до рівня, достатнього для уникнення дублювань і забезпечення

ефективних агрегацій за проєктами, тегами та календарними періодами. Усі часові

мітки зберігаються у форматі ISO 8601 (UTC), що спрощує порівняння та

групування; відображення у звітах виконується з конвертацією у локальний час

користувача.

Логічне ядро моделі утворюють сутності areas, projects, tasks, subtasks, tags,

task_tags (зв’язувальна таблиця «багато-до-багатьох») та time_sessions. Відношення

areas–projects має кардинальність 1:N і слугує для верхньорівневої класифікації

проєктів. Сутність tasks належить до проєкту (опціонально) та має статус

(«open»/«done»), пріоритет і дедлайн. Теги реалізовано через tags та task_tags, що

дозволяє призначати кілька тегів одному завданню і повторно використовувати теги

в різних контекстах. Підзавдання subtasks надають декомпозицію складних робіт з

каскадним видаленням разом із батьківським завданням. Облік часу фіксується у

time_sessions: кожен запис містить початок, кінець і тривалість секундами, а також

джерело («manual», «timer», «pomodoro»); зв’язок із завданням опціональний, що

24

дозволяє реєструвати загальні сесії. [5-7]

Для забезпечення цілісності застосовано зовнішні ключі з явною семантикою:

для tasks.project_id задано ON DELETE SET NULL, щоб видалення проєкту не

призводило до втрати історії; для subtasks.task_id використано ON DELETE

CASCADE, адже підзавдання не мають сенсу поза межами батьківської задачі; для

time_sessions.task_id також ON DELETE SET NULL, щоб зберегти хронологію часу

навіть після очистки завдань. У таблиці task_tags первинний ключ композитний

(task_id, tag_id), що унеможливлює дублювання зв’язків. Індекси розміщено на

полях, які найчастіше використовуються в запитах і фільтрах: tasks(status),

tasks(due_at), projects(area_id), subtasks(task_id), time_sessions(task_id),

time_sessions(started_at). Така конфігурація пришвидшує побудову звітів і відгук

інтерфейсу за наявності значних обсягів даних.

З точки зору типів даних дотримано сумісності зі сховищем SQLite: часові

поля зберігаються як TEXT у форматі ISO 8601; булеві атрибути виражені як

INTEGER з конвенцією 0/1; колірні коди для візуалізації проєктів і тегів - як TEXT

у форматі HEX. Значення за замовчуванням для полів аудиту (created_at, updated_at)

визначено через datetime('now') на стороні БД, що дозволяє логувати події

незалежно від логіки клієнта. Усі запити виконуються параметризовано; під час

ініціалізації вмикається PRAGMA foreign_keys = ON.

Текстова діаграма моделі (див. рис. 3.2) відображає сутності та ключові

зв’язки з вказанням кардинальностей:

25

Рисунок 3.2 - Діаграма моделі даних Worktime

Нижче наведено репрезентативні фрагменти визначень і запитів (повні DDL -

у додатках). Приклад створення зв’язувальної таблиці для тегів демонструє

композитний ключ і каскадне видалення зв’язків разом із сутностями, до яких вони

належать.

-- Приклад. Зв’язок "завдання-теги" (many-to-many)

CREATE TABLE task_tags (

 task_id INTEGER REFERENCES tasks(id) ON DELETE CASCADE,

 tag_id INTEGER REFERENCES tags(id) ON DELETE CASCADE,

 PRIMARY KEY (task_id, tag_id)

);

Запит для аналітики часу по проєктах використовує обмеження на рівні БД і

забезпечує коректну агрегацію при великій кількості сесій.

-- Приклад. Підсумковий час у годинах за проєктами

SELECT p.name AS project_name,

 SUM(ts.duration_sec) / 3600.0 AS total_hours

FROM time_sessions ts

JOIN tasks t ON ts.task_id = t.id

JOIN projects p ON t.project_id = p.id

GROUP BY p.id, p.name

ORDER BY total_hours DESC;

Такий підхід до моделювання забезпечує стабільні інваріанти для звітності:

26

збереження історії навіть при зміні структури проєктів, швидкі вибірки за часовими

діапазонами та тегами, просте розширення довідників без міграцій, що зачіпають

історичні дані. У поєднанні з індексами на критичних полях і параметризованими

запитами модель даних відповідає вимогам офлайн-роботи, захисту від ін’єкцій та

продуктивності, необхідним для настільного застосунку з локальною базою. [8]

3.3. Підсистема автоматизованого звітування: моделі конфігурацій

Підсистема автоматизованого звітування працює на основі сталих

«конфігурацій звітів», що зберігаються локально і виконуються за розкладом.

Конфігурація визначає часовий період, область даних (проєкти, теги, статуси

завдань), формат вихідного файлу, шаблон іменування та каталог збереження.

Планувальник періодично аналізує активні конфігурації, обчислює наступний

запуск і формує підсумкові документи без мережевих залежностей.

Ядро моделі становлять дві сутності: report_configs (опис звіту та розкладу) і

report_runs (журнал запусків). Перша зберігає усі параметри формування і

використовується планувальником як джерело істини; друга фіксує історію

виконання, що дає змогу відстежувати помилки, час генерації та місце збереження

артефактів. Зберігання реалізовано у SQLite: конфігурація записується як набір

нормалізованих полів і JSON-параметрів (для гнучких списків), що спрощує

еволюцію схеми.

Конфігурація охоплює чотири групи параметрів. Період задається у

фіксованому вигляді (date_from, date_to, ISO 8601, UTC) або як відносний пресет

(relative_period ∈ {today, yesterday, this_week, last_week, this_month, last_month,

custom}); у другому випадку період обчислюється під час запуску. Область даних

визначається фільтрами project_ids[], tag_ids[], status_filter ∈ {open, done, all}, а

також параметрами агрегації (group_by ∈ {day, week, project, tag}); відсутність

списків означає «усі значення». Вивід описує тип format ∈ {pdf, csv, both}, шаблон

імені filename_tpl і каталог збереження output_dir. Розклад задається компактною

RRULE-моделлю (частота, день/дата, час, часовий пояс), доповненою службовими

27

полями is_active, last_run_at, next_run_at і параметром зберігання артефактів

retention_days.

Нижче наведено репрезентативний DDL-фрагмент (мінімально необхідні

поля; допоміжні - у додатках):

-- Конфігурації звітів

CREATE TABLE report_configs (

 id INTEGER PRIMARY KEY AUTOINCREMENT,

 name TEXT NOT NULL,

 is_active INTEGER DEFAULT 1,

 period_mode TEXT CHECK (period_mode IN ('fixed','relative')) NOT NULL,

 date_from TEXT, -- ISO 8601 (UTC), якщо fixed

 date_to TEXT,

 relative_period TEXT, -- якщо relative

 project_ids_json TEXT, -- JSON-масив [1,2,...]

 tag_ids_json TEXT, -- JSON-масив [3,4,...]

 status_filter TEXT CHECK (status_filter IN ('open','done','all')) DEFAULT 'all',

 group_by TEXT CHECK (group_by IN ('day','week','project','tag')) DEFAULT 'week',

 format TEXT CHECK (format IN ('pdf','csv','both')) NOT NULL,

 template TEXT DEFAULT 'detailed', -- 'simple' | 'detailed'

 output_dir TEXT NOT NULL,

 filename_tpl TEXT NOT NULL, -- напр.: "worktime_{period_name}_{ts}.{ext}"

 timezone TEXT DEFAULT 'Europe/Kyiv',

 rrule_json TEXT NOT NULL, -- {"freq":"WEEKLY","byweekday":["MO"],"at":"09:00"}

 last_run_at TEXT,

 next_run_at TEXT,

 retention_days INTEGER DEFAULT 0 -- 0 = без авто-видалення

);

-- Журнал запусків

CREATE TABLE report_runs (

 id INTEGER PRIMARY KEY AUTOINCREMENT,

 config_id INTEGER REFERENCES report_configs(id) ON DELETE CASCADE,

 started_at TEXT NOT NULL,

 finished_at TEXT,

 status TEXT CHECK (status IN ('ok','error','skipped')) NOT NULL,

 artifact_path TEXT, -- фактичний шлях до PDF/CSV

 message TEXT -- діагностика у разі помилок

28

);

Розклад описується JSON-структурою з полями freq ∈

{DAILY,WEEKLY,MONTHLY}, byweekday[] (напр., ["MO","FR"]), bymonthday[]

(для місячних), at у локальному часі HH:MM і timezone. Планувальник при кожному

циклі інтерпретує правило, порівнює next_run_at із поточним часом і, у разі

настання події, запускає генерацію, після чого переносить next_run_at на наступну

дату за тим самим правилом. Для відносних періодів межі date_from/date_to

обчислюються на момент запуску з урахуванням timezone. [9]

Модель виводу фіксує як тип файлу, так і спосіб іменування. Шаблон

filename_tpl підтримує підстановки {period_from}, {period_to}, {period_name}, {ts}

(мітка часу YYYYMMDD_HHmm), {ext} (pdf або csv), а також {scope} (узагальнене

позначення фільтрів, напр. all або proj-1-3). Відповідність каталогу output_dir

перевіряється перед записом; за неможливості збереження виконання позначається

як error із відповідним повідомленням у report_runs.message.

Наведено показовий приклад конфігурації у форматі JSON (поле rrule_json у

report_configs):

{

 "name": "Щотижневий підсумок",

 "period_mode": "relative",

 "relative_period": "last_week",

 "project_ids": [1, 3],

 "tag_ids": [],

 "status_filter": "all",

 "group_by": "project",

 "format": "pdf",

 "template": "detailed",

 "output_dir": "C:/Users/User/Documents/WorktimeReports",

 "filename_tpl": "worktime_{period_name}_{ts}.{ext}",

 "timezone": "Europe/Kyiv",

 "rrule": { "freq": "WEEKLY", "byweekday": ["MO"], "at": "09:00" }

}

Інваріанти моделі прості та перевіряються при збереженні. Для режиму fixed

обов’язкові date_from і date_to; для relative - значення relative_period. Хоча б один із

29

параметрів області даних може бути порожнім, що означає «усі проєкти/теги».

Вихідний каталог має бути доступним на запис; формат pdf вимагає доступності

компонента рендерингу, формат csv - коректної генерації зведених таблиць. Поля

last_run_at і next_run_at оновлюються виключно планувальником, що

унеможливлює конкуренцію між вручну запущеними та автоматичними

сценаріями.

Запропонована модель конфігурацій забезпечує відокремлення декларативної

частини («що й коли формувати») від процедурної («як саме виконати»). Вона

сумісна з офлайн-архітектурою застосунку, підтримує прозору еволюцію

параметрів і дозволяє формувати регулярні звіти PDF/CSV за розкладом без

введення додаткової серверної інфраструктури. [10-11]

3.4. Алгоритми обліку часу: таймер, Помодоро, обробка edge-cases

Підсистема обліку часу забезпечує фіксацію фактичних інтервалів роботи та

формує дані для звітності. Базовим інваріантом є правило «одна активна сесія

одночасно» та зберігання кожної сесії у таблиці time_sessions з полями started_at,

ended_at, duration_sec, task_id (опційно) і source ∈ {manual, timer, pomodoro}. Усі

часові мітки записуються у форматі ISO 8601 (UTC), що дає можливість коректно

порівнювати та агрегувати дані незалежно від локального часового поясу.

Алгоритм звичайного таймера складається зі станів idle → running → idle.

Перехід «start» створює запис із заповненим started_at і ended_at = NULL; перехід

«stop» встановлює ended_at поточним часом і обчислює тривалість:

duration_sec = max(0, floor((ended_at - started_at) / 1000)). Перед запуском таймера

перевіряється відсутність іншої активної сесії (ended_at IS NULL). Операції

start/stop виконуються атомарно: запис/оновлення супроводжується фіксацією

транзакції, що виключає часткові стани у випадку збоїв. Прив’язка до завдання

здійснюється під час старту; якщо завдання видалено пізніше, зовнішній ключ ON

DELETE SET NULL зберігає історію часу без втрати інтервалів.

Алгоритм Помодоро реалізовано як скінченний автомат із фазами work,

30

short_break, long_break, idle. Параметри (тривалість роботи, короткої та довгої

перерви, періодичність довгої перерви) задаються у налаштуваннях. На старті

«work» створюється сесія із source = 'pomodoro' і, за наявності, із task_id. Після

завершення «work» сесія закривається з обчисленням duration_sec, інтерфейс

переходить у «short_break» або «long_break» згідно лічильника циклів, а час перерв

не записується у time_sessions (щоб не потрапляв до робочих годин). Після

завершення перерви автомат повертається до «work» або в «idle». Якщо користувач

зупинив цикл достроково, активна робоча сесія коректно закривається з фактичною

тривалістю, а лічильник циклів не інкрементується.

Розрахунок метрик і візуалізацій спирається на постпроцесинг сесій. Сесії, що

перетинають календарні межі, у звітах діляться на частини пропорційно часу

до/після опівночі; при цьому в самій БД лишається один запис, а сегментація

виконується на рівні запиту та обчислень. Для денних/тижневих підсумків

використовується локальний часовий пояс користувача, але порівняння та

сортування відбувається за UTC, що виключає неоднозначності при переходах між

поясами.

Граничні випадки обробляються захисними перевірками та виправними діями

на рівні бекенда. Якщо система перейшла в сон і прокинулась із суттєвою

затримкою, алгоритм «stop» однаково обчислює тривалість за різницею міток часу;

додаткових дій не потрібно. Якщо користувач змінює системний час або

відбувається перехід на літній/зимовий час, ISO 8601 у UTC мінімізує спотворення;

у випадку, коли ended_at < started_at, сесія позначається як некоректна й не

включається до підсумків до ручного виправлення. Повторний «start», коли вже є

активна сесія, заборонено; користувач отримує повідомлення про необхідність

спочатку зупинити поточну сесію. Дуже короткі сесії (наприклад, < 30 секунд) не

видаляються автоматично, але у звітах можуть бути відфільтровані окремою опцією

«ігнорувати дрібні інтервали». Для зручності аналізу дозволено «злиття»

послідовних сесій однієї задачі, розділених паузою не більш як N хвилин (параметр

звіту), - це виконується під час побудови зведень і не змінює первинні дані.

Обробка збоїв і відновлення забезпечується інваріантами на рівні схеми та

31

транзакцій. Будь-яке закриття застосунку під час активної сесії залишає ended_at =

NULL; при наступному старті застосунок виявляє таку сесію і пропонує або

продовжити відлік, або закрити її поточним часом (із явним підтвердженням

користувача). Усі записи створюються/оновлюються параметризованими запитами;

PRAGMA foreign_keys = ON гарантує узгодженість при видаленні пов’язаних

сутностей. Для продуктивних сценаріїв рекомендовано індекси

time_sessions(started_at) та time_sessions(task_id); це прискорює діапазонні запити і

агрегації.

У підсумку, запропоновані алгоритми забезпечують: (1) коректне фіксування

інтервалів часу як у ручному режимі, так і в режимі Помодоро; (2) стійкість до

типових аномалій середовища (сон системи, зміна часу, перехід через північ); (3)

збереження історії та відтворюваність підсумків завдяки обчисленням у UTC і

параметризованим запитам; (4) відокремлення робочих інтервалів від перерв із

можливістю подальшого аналізу фокусу. Така поведінка узгоджується з вимогами

до автономної роботи, цілісності даних і якості звітності, сформульованими у

розділах 1–3.

32

4. ПРАКТИЧНА ЧАСТИНА

4.1. Вибір технологій і обґрунтування

Вимоги до Worktime сформульовані як офлайн-робота з локальним

зберіганням, кросплатформеність без складної інфраструктури, невеликий розмір

інсталятора, швидкий інтерфейс і прозора звітність. Додатково важливі безпека

доступу до ресурсів ОС, простота супроводу та можливість подальшого

розширення (синхронізація, інтеграції). За цих критеріїв обрано архітектуру

«WebView-UI + нативний бекенд» на базі Tauri, з фронтендом на React/TypeScript і

локальною базою даних SQLite.

Платформу Tauri обрано замість Electron, Flutter, .NET MAUI чи Qt через

поєднання невеликого дистрибутива, використання системного WebView та чіткої

моделі безпеки. Порівняно з підходом «все в одному процесі» Tauri ізолює

інтерфейс у WebView, а системні дії виконує нативний бекенд на Rust із явними

дозволами (capabilities) та політикою CSP. Це зменшує площу атаки і дає змогу

точно контролювати, які системні API відкриті застосунку. Додатковою перевагою

є звична веб-екосистема для UI і нативні можливості для продуктивних обчислень і

роботи з файлами.

Rust у бекенді використано як мову з гарантіями безпеки пам’яті та

передбачуваною продуктивністю. Взаємодія між шарами реалізована через IPC-

виклики Tauri-команд, що приймають параметри, виконують запити до БД та

повертають серіалізовані результати. Параметризовані SQL та транзакції

забезпечують цілісність і захист від ін’єкцій. Короткий приклад ілюструє шаблон

виклику:

// Приклад виклику бекенд-команди з фронтенду

import { invoke } from '@tauri-apps/api/core'

const tasks = await invoke('list_tasks', { status: 'open' })

// Обробник на боці Rust (скорочено)

#[tauri::command]

async fn list_tasks(status: String, state: State<'_, Db>) -> Result<Vec<Task>,

33

String> {

 let rows = state

 .select("select id, title, status from tasks where status = ?", &[&status])

 .await

 .map_err(|e| e.to_string())?;

 Ok(rows)

}

Для зберігання даних обрано SQLite як реляційне ACID-сховище у вигляді

одного файлу. Такий вибір узгоджується з офлайн-архітектурою, спрощує резервне

копіювання, пришвидшує розгортання і не потребує окремого сервера. Схема (areas,

projects, tasks, tags, task_tags, subtasks, time_sessions) підтримує індекси на частих

фільтрах і зовнішні ключі з потрібною семантикою (SET NULL, CASCADE), що дає

збалансовану продуктивність і цілісність для аналітики. Альтернативи на кшталт

локальних документних сховищ або вбудованих key-value-рішень відхилено через

відсутність зручних JOIN-агрегацій і SQL-звітів.

У ролі UI-стеку використано React 18 з TypeScript 5, що забезпечує

компонентну модель, перевірку типів і зручну реюзабельність. Збірку та дев-цикл

виконує Vite, який пришвидшує старт і гаряче оновлення модулів. Маршрутизацію

організовано через React Router, що дозволяє ергономічну структуру сторінок

(«Завдання», «Сьогодні/Наступні», «Таймер», «Звіти», «Налаштування»). Такий

набір зберігає знайоме для веб-розробників середовище та уніфікує підхід до

повторно використовуваних елементів інтерфейсу.

Для керування «серверним» станом (у нашому випадку - відповідями з

IPC/БД) застосовано React Query. На відміну від класичних глобальних стораїв, він

природно описує життєвий цикл даних: кеш, «застарілість», інвалідацію після

мутацій і повторні спроби при збоях. Це зменшує кількість зайвих звернень до

бекенда та покращує реактивність UI, особливо у сценаріях списків завдань,

фільтрів і оновлення звітних зведень.

Для стилізації обрано Tailwind CSS як утилітарний підхід з малим накладом

під час рендерингу і передбачуваною типографікою. Темна/світла теми реалізовані

34

на CSS-змінних, що спрощує підтримку дизайну. Для діаграм використано Recharts,

оскільки він прямо інтегрується з React-компонентами й достатній для

лінійних/стовпчикових графіків продуктивності. Альтернативи на кшталт Chart.js

потребують додаткових обгорток і менш природні в декларативному JSX-потоку.

Підсистема звітності базується на jsPDF та jspdf-autotable для формування

PDF і власних перетвореннях у CSV. Рішення працює локально у WebView/бекенді,

не залежить від мережі та дозволяє швидко отримувати документи з таблицями і

простими діаграмами. Інструменти класу «движок друку HTML → PDF» не

використовувалися через більшу залежність від системних компонентів і складнішу

поставку у кросплатформенних збірках.

З погляду безпеки застосовано «білий список» можливостей Tauri,

параметризовані SQL-запити, PRAGMA foreign_keys = ON, а також CSP для

фронтенду. Усі дані користувача зберігаються локально у файлі БД; застосунок не

передає інформацію у зовнішні сервіси, що узгоджується з вимогами приватності.

Така комбінація дає контрольований доступ до ОС і чіткі інваріанти на межі IPC.

Свідомо прийнято кілька компромісів. Залежність від системного WebView

означає дрібні відмінності рендерингу між платформами; це мінімізовано

тестуванням критичних екранів. Бракує «з коробки» глибоких нативних інтеграцій,

але вони можуть бути додані цілеспрямовано через Tauri-плагіни. Rust має вищий

поріг входу, проте інвестиції окуповуються передбачуваністю продуктивності та

безпекою пам’яті.

У підсумку вибраний стек (Tauri + Rust + SQLite на боці платформи та React +

TypeScript + Vite + React Query + Tailwind + Recharts на боці UI) узгоджується з

вимогами до офлайн-режиму, локальної звітності, кросплатформеної поставки та

безпеки. Рішення залишає простір для розвитку: опційні модулі синхронізації,

імпорт/експорт, інтеграції з календарями, а також розширення аналітики без зміни

фундаментальної архітектури.

35

4.2. Реалізація фронтенду: структура, маршрутизація, стан, ключові

компоненти

Фронтенд було реалізовано на React 18 з TypeScript 5 і Vite. Архітектурно

було прийнято підхід «тонкі сторінки - товсті сервісні модулі»: сторінки

відповідають лише за відображення та взаємодію користувача, а вся робота з

даними, перетвореннями та валідацією була винесена в модулі src/lib/*. Така

декомпозиція була обрана для зменшення зв’язності та полегшення тестування.

«Серверний» стан - усі вибірки й мутації, що залежать від БД - було доручено React

Query, що дало керований кеш, правила «застарілості» та автоматичну інвалідацію

після змін. Стилізацію було уніфіковано через Tailwind CSS з використанням CSS-

змінних для світлої/темної тем.

У файлі src/main.tsx було зосереджено мінімальний код ініціалізації кореня та

під’єднання глобальних стилів. Рішення не додавати іншу логіку на цьому рівні

було прийнято, щоб уникнути прихованих залежностей до старту застосунку та

полегшити подальшу міграцію на інші рендерери за потреби.

У src/App.tsx було створено і сконфігуровано єдиний екземпляр QueryClient, а

також налаштовано маршрутизацію. Було встановлено staleTime = 5 хв, оскільки

дані з локальної БД змінюються лише у відповідь на явні дії користувача; таким

чином було зменшено фонові опитування. refetchOnWindowFocus було вимкнено,

бо настільний режим не потребує «підтягування» даних при фокусі:

const queryClient = new QueryClient({

 defaultOptions: { queries: { staleTime: 5 * 60_000, refetchOnWindowFocus: false, retry: 1 } }

})

Компонент Layout.tsx було використано як каркас для навігації та темізації.

Збереження теми було реалізовано через локальне сховище, а застосування - через

перемикання кореневого класу dark і набір CSS-змінних. Такий підхід було обрано

для мінімізації перерендерів і збереження сумісності між платформами WebView:

const [theme, setTheme] = useState<'light' | 'dark'>('light')

useEffect(() => { const t = loadTheme(); setTheme(t); applyTheme(t) }, [])

const toggleTheme = () => { const t = theme === 'light' ? 'dark' : 'light'; setTheme(t); saveTheme(t);

applyTheme(t) }

36

Роботу з БД було інкапсульовано в lib/db.ts. Було додано детектор середовища

isTauri(), щоб у браузерному режимі повертати узгоджені макети даних, а у

нативному - виконувати запити через Tauri SQL-плагін. Підключення до БД було

закешовано у dbPromise (патерн Singleton), щоб уникнути дублювання з’єднань:

let dbPromise: Promise<any> | null = null

export const isTauri = () => '__TAURI_IPC__' in window

export async function getDbOrThrow() {

 if (!isTauri()) throw new Error('DB unavailable in browser mode')

 if (!dbPromise) {

 const { default: Database } = await import('@tauri-apps/plugin-sql')

 dbPromise = Database.load('sqlite:worktime.db')

 }

 return dbPromise

}

Доступ до предметних сутностей було реалізовано «репозиторіями»

(lib/tasks.ts, lib/projects.ts, lib/tags.ts, lib/time.ts, lib/reports.ts). У типах було

зафіксовано інваріанти моделі (наприклад, status: 'open'|'done'), що дозволило

IDE/TS контролювати коректність викликів. Запити було зроблено

параметризованими, щоб уникнути ін’єкцій; у браузерному режимі ті самі функції

повертали mock-значення, що зберегло єдиний контракт для сторінок.

export type Task = { id: number; title: string; status: 'open'|'done'; priority: number; due_at?: string|null;

project_id?: number|null }

export async function listTasks(): Promise<Task[]> {

 if (!isTauri()) return [{ id: 1, title: 'Тестове завдання', status: 'open', priority: 1 }]

 const db = await getDbOrThrow()

 const rows = await db.select('select id, title, status, priority, due_at, project_id from tasks order by

created_at desc')

 return rows as Task[]

}

export async function addTaskWithDetails(title: string, description: string, priority: number, dueAt:

string|null, projectId: number|null, tagIds: number[]): Promise<number> {

 if (!isTauri()) return Math.floor(Math.random() * 1000)

 const db = await getDbOrThrow()

 await db.execute(

37

 'insert into tasks (title, description, priority, due_at, project_id, status) values (?, ?, ?, ?, ?, ?)',

 [title, description, priority, dueAt, projectId, 'open']

)

 const row = await db.select('select last_insert_rowid() as id')

 const taskId = (row?.[0]?.id as number) ?? 0

 for (const tagId of tagIds) {

 await db.execute('insert into task_tags (task_id, tag_id) values (?, ?)', [taskId, tagId])

 }

 return taskId

}

Використання React Query було стандартизовано: кожна сторінка отримала

useQuery для читання і useMutation для змін; після мутації було запроваджено

інвалідацію відповідних ключів, що гарантувало узгодженість UI і БД. На сторінці

завдань фільтрацію було залишено на клієнті, щоб не ускладнювати SQL і не

збільшувати кількість звернень:

const { data: tasks = [] } = useQuery({ queryKey: ['tasks'], queryFn: listTasks })

const addTask = useMutation({

 mutationFn: (t: Partial<Task>) => addTaskWithDetails(t.title!, t.description ?? '', t.priority ?? 0,

t.due_at ?? null, t.project_id ?? null, []),

 onSuccess: () => qc.invalidateQueries({ queryKey: ['tasks'] })

})

const filtered = tasks.filter(t => (!projectId || t.project_id === projectId) &&

t.title.toLowerCase().includes(q.toLowerCase()))

Компонент TaskCard було розроблено як «тонкий» віджет без знання про

джерело даних. Було передбачено лише відображення отриманих полів і мінімальну

логіку форматування, що дозволило повторно використовувати картку на різних

сторінках без побічних ефектів:

export function TaskCard({ task }: { task: Task }) {

 return (

 <div className="rounded-lg border p-3">

 <div className="font-medium">{task.title}</div>

 <div className="text-sm text-muted">{task.status} • пріоритет {task.priority}</div>

 </div>

)

}

Функціонал швидкого додавання було реалізовано модальним вікном

38

QuickAddModal. Було додано глобальні гарячі клавіші (Esc для закриття і

Ctrl/Cmd+Enter для сабміту), скидання полів при відкритті та блокування

підтвердження за порожньої назви. Така поведінка була обрана, щоб мінімізувати

«шум» у БД і прискорити ввід:

useEffect(() => {

 if (!open) return

 const onKey = (e: KeyboardEvent) => {

 if (e.key === 'Escape') onClose()

 else if ((e.ctrlKey || e.metaKey) && e.key === 'Enter') handleSubmit()

 }

 window.addEventListener('keydown', onKey)

 return () => window.removeEventListener('keydown', onKey)

}, [open, title, description])

Облік часу було інкапсульовано в lib/time.ts. Алгоритм «одна активна сесія»

було підтримано на рівні БД і бекенда; фронтенд викликає лише атомарні операції

старту/зупинки. Було прийнято рішення записувати мітки у форматі ISO 8601

(UTC), щоб уникнути неоднозначностей при переходах часу. Розрахунок

duration_sec було виконано на момент стоп-події, що забезпечило коректність навіть

після сну системи:

export async function startSession(taskId: number|null, source: 'timer'|'pomodoro'|'manual'='timer') {

 if (!isTauri()) return

 const db = await getDbOrThrow()

 await db.execute('insert into time_sessions (task_id, started_at, source) values (?, ?, ?)', [taskId, new

Date().toISOString(), source])

}

export async function stopSession() {

 if (!isTauri()) return

 const db = await getDbOrThrow()

 const now = new Date().toISOString()

 const rows = await db.select('select id, started_at from time_sessions where ended_at is null order by

started_at desc limit 1')

 if (!rows.length) return

 const s = rows[0]

 const dur = Math.floor((new Date(now).getTime() - new Date(s.started_at).getTime()) / 1000)

 await db.execute('update time_sessions set ended_at = ?, duration_sec = ? where id = ?', [now, dur,

s.id])

39

}

Візуалізацію звітів було реалізовано через Recharts. Було прийнято рішення

виносити усі агрегації в прикладний шар, а компоненти діаграм робити

декларативними і «німими» щодо бізнес-правил. Це дозволило легко змінювати

вигляд графіків без ризику вплинути на підрахунок показників:

export function TimeSpentChart({ data }: { data: { date: string; hours: number }[] }) {

 return (

 <ResponsiveContainer width="100%" height={300}>

 <LineChart data={data}>

 <CartesianGrid strokeDasharray="3 3" />

 <XAxis dataKey="date" /><YAxis /><Tooltip /><Legend />

 <Line type="monotone" dataKey="hours" name="Години" />

 </LineChart>

 </ResponsiveContainer>

)

}

Обробку помилок було уніфіковано через колбеки React Query (onError) та

прості нотифікації у UI. Було прийнято рішення не кидати винятки в компонентах

відображення, а працювати з «порожніми станами» сторінок (скелетони/«даних

немає»), що покращило UX у офлайн-сценаріях. Для продуктивності було

застосовано мікрооптимізації: мемоізацію стабільних пропсів у діаграм, сортування

та фільтрацію вже отриманих масивів, а також стабільні queryKey, щоб уникати

зайвих рефетчів.

У підсумку було реалізовано фронтенд, де кожен шар має чітку роль: сторінки

- лише UI, сервіси lib/* - логіка й доступ до даних, React Query - життєвий цикл і

кеш, компоненти - повторно використовувані блоки без знання про джерела даних.

Прийнята організація коду забезпечила відтворювану поведінку в Tauri та зручний

режим розробки у браузері, а також спростила підтримку й подальше розширення

функціональності.

4.3. Реалізація бекенду Tauri/Rust: команди, SQL-плагін, політики безпеки

Бекенд було реалізовано у середовищі Tauri 2 на Rust як тонкий системний

40

шар, що виконує три ролі: (1) надає IPC-команди для фронтенду; (2) запускає

планувальник автоматизованих звітів без прив’язки до інтерфейсу; (3) застосовує

політики безпеки (capabilities, CSP, файлові «пісочниці»). Доступ до локальної БД

SQLite було організовано двома комплементарними шляхами: для більшості UI-

операцій - через @tauri-apps/plugin-sql (з боку WebView), для фонових бекенд-задач

- через легку обгортку над rusqlite (без участі WebView). Така комбінація була

обрана, щоб уникнути залежності планувальника від життєвого циклу вікна і

зберегти єдиний формат даних (див. модель у п. 3.2).

IPC-межу було оформлено явно через #[tauri::command]. Для параметрів і

відповідей було використано serde-типи, щоб закріпити контракт та мінімізувати

помилки серіалізації. Команди було зведено до чистих функцій: вони приймають

DTO, виконують атомарну дію, повертають результат або вичерпне повідомлення

про помилку.

use serde::{Deserialize, Serialize};

use tauri::{AppHandle, Manager};

#[derive(Deserialize)]

struct NewTaskDto {

 title: String,

 description: Option<String>,

 priority: i64,

 due_at: Option<String>,

 project_id: Option<i64>,

}

#[derive(Serialize)]

struct NewTaskResult { id: i64 }

#[tauri::command]

async fn add_task(handle: AppHandle, dto: NewTaskDto) -> Result<NewTaskResult, String> {

 // валідація вхідних даних (мінімальні інваріанти)

 if dto.title.trim().is_empty() { return Err("Порожня назва завдання".into()); }

 // делегування у шар доступу до БД (rusqlite або плагін; тут - бекендовий шлях)

 let db = db::open(&handle).map_err(|e| e.to_string())?;

41

 let id = db::insert_task(&db, &dto).map_err(|e| e.to_string())?;

 Ok(NewTaskResult { id })

}

#[tauri::command]

async fn stop_active_session(handle: AppHandle) -> Result<(), String> {

 let db = db::open(&handle).map_err(|e| e.to_string())?;

 db::stop_latest_session(&db).map_err(|e| e.to_string())

}

Усі команди було зареєстровано в invoke_handler, а загальний стан застосунку

(напр., шлях до БД, прапорець зупинки планувальника) - передано через

.manage(...).

pub fn run() {

 tauri::Builder::default()

 .invoke_handler(tauri::generate_handler![

 add_task,

 stop_active_session,

 compute_next_run, // див. планувальник нижче

 ensure_report_dir

])

 .setup(|app| {

 scheduler::spawn(app.handle()); // запуск фонових задач

 Ok(())

 })

 .run(tauri::generate_context!())

 .expect("error while running app");

}

Рішення «повертати Result<..., String>» було прийнято, щоб на межі IPC мати

прогнозовану серіалізацію помилок без власних типів винятків.

Для операцій, ініційованих із UI, було залишено plugin-sql (виклики з

TypeScript із параметризованими запитами), оскільки це скорочує шлях від

компонента до БД і забезпечує простий контракт у фронтенді. Для бекендових

сценаріїв (планувальник звітів) було додано вузьке API на rusqlite, яке відкриває той

самий файл worktime.db з увімкненими зовнішніми ключами і транзакціями.

use rusqlite::{params, Connection, OpenFlags, Result as SqlResult};

42

pub fn open(handle: &tauri::AppHandle) -> SqlResult<Connection> {

 let path = handle

 .path_resolver()

 .app_data_dir()

 .expect("app data dir")

 .join("worktime.db");

 let conn = Connection::open_with_flags(

 path,

 OpenFlags::SQLITE_OPEN_READ_WRITE | OpenFlags::SQLITE_OPEN_CREATE,

)?;

 conn.execute_batch("PRAGMA foreign_keys = ON; PRAGMA journal_mode = WAL;")?;

 Ok(conn)

}

pub fn insert_task(conn: &Connection, dto: &crate::NewTaskDto) -> SqlResult<i64> {

 let tx = conn.unchecked_transaction()?;

 conn.execute(

 "INSERT INTO tasks (title, description, priority, due_at, project_id, status)

 VALUES (?, ?, ?, ?, ?, 'open')",

 params![

 dto.title,

 dto.description.as_deref().unwrap_or(""),

 dto.priority,

 dto.due_at,

 dto.project_id

],

)?;

 let id = conn.last_insert_rowid();

 tx.commit()?;

 Ok(id)

}

На JS-боці (WebView) було залишено наявний доступ через плагін:

const { default: Database } = await import('@tauri-apps/plugin-sql')

const db = await Database.load('sqlite:worktime.db')

await db.execute('update time_sessions set ended_at = ?, duration_sec = ? where id = ?', [now, dur, id])

Такий розподіл дозволив: (1) не блокувати планувальник залежністю від

WebView; (2) утримати простий шлях для UI-CRUD; (3) зберегти один фізичний

43

файл БД і ті самі інваріанти (PRAGMA foreign_keys = ON).

Планувальник було реалізовано як нескладний асинхронний цикл Tokio, який

періодично: читає активні report_configs, обчислює «вікно» періоду (fixed/relative),

генерує агрегати SQL-запитами й формує артефакти (CSV/PDF). Після успіху

планувальник оновлює report_runs і переносить next_run_at на наступну дату згідно

з RRULE.

use chrono::{DateTime, Utc, Local};

use tauri::AppHandle;

use std::time::Duration;

pub fn spawn(handle: AppHandle) {

 tauri::async_runtime::spawn(async move {

 loop {

 if let Err(e) = tick(&handle).await {

 eprintln!("[scheduler] {}", e);

 }

 tauri::async_runtime::sleep(Duration::from_secs(60)).await;

 }

 });

}

async fn tick(handle: &AppHandle) -> Result<(), String> {

 let conn = crate::db::open(handle).map_err(|e| e.to_string())?;

 let due = crate::reports::select_due_configs(&conn).map_err(|e| e.to_string())?;

 for cfg in due {

 let (from, to) = crate::reports::resolve_period(&cfg, Local::now());

 let summary = crate::reports::build_summary(&conn, &cfg, from, to)?;

 let path = crate::reports::render_artifact(&cfg, &summary)?;

 crate::reports::mark_done(&conn, &cfg, path)?;

 }

 Ok(())

}

Розрахунок періодів (relative: this_week/last_month/...) було винесено в окремі

чисті функції, щоб спростити тестування. Генератор PDF/CSV було ізольовано від

БД: він приймає вже підготовлені агрегати й пише файл лише в дозволений каталог

(див. безпеку нижче).

44

Політики було оформлено capabilities-файлами у src-tauri/capabilities/, де явно

вказано, що дозволено застосунку.

1. SQL-плагін - було обмежено доступ лише до БД worktime.db у каталозі даних

застосунку.

2. Файлова система - було надано тільки читання/запис у підкаталог Reports/ для

артефактів звітів.

3. Shell/HTTP/Clipboard - було заборонено.

4. CSP - було зафіксовано політику default-src 'self', script-src 'self', без

віддалених джерел.

Сapability для SQL (скорочено)

{

 "identifier": "sql.local-db",

 "description": "Дозвіл на роботу лише з локальною БД worktime.db",

 "permissions": [

 {

 "identifier": "sql:load",

 "scopes": ["sqlite:worktime.db"]

 }

]

}

Сapability для звітного каталогу (скорочено)

{

 "identifier": "fs.reports",

 "description": "Доступ лише до каталогу звітів",

 "permissions": [

 { "identifier": "fs:read", "scopes": ["$APPDATA/Worktime/Reports/**"] },

 { "identifier": "fs:write", "scopes": ["$APPDATA/Worktime/Reports/**"] }

]

}

CSP у index.html (уривок)

<meta http-equiv="Content-Security-Policy"

 content="default-src 'self'; script-src 'self'; style-src 'self' 'unsafe-inline'; img-src 'self' data:;">

У бекенді було додано перевірки шляху в момент збереження артефакту:

навіть за наявності capability «fs.reports» запис відбувається лише у підкаталог

45

Reports, що унеможливлює «directory traversal». Для SQL було заборонено «сирі»

рядки у запитах; усі запити виконуються параметризовано (і в JS-, і в Rust-шарі).

Для довготривалих операцій (рендер PDF) було використано окремий

потік/асинхронний таск, щоб не блокувати головний цикл.

У всіх бекенд-операціях було застосовано правило: «усе або нічого».

Вставки/оновлення сутностей (напр., створення задачі з тегами, закриття сесії) було

загорнуто в транзакції. У випадку помилки планувальник фіксує report_runs.status =

'error' із повідомленням діагностики; невдалі спроби не впливають на наступні

конфігурації. Для БД було зафіксовано journal_mode = WAL, щоб покращити

одночасний доступ (UI + планувальник) та уникнути «database is locked» у

щоденних сценаріях.

У бекенді було реалізовано чітку IPC-межу з валідацією, двоканальний доступ

до однієї локальної БД (plugin-sql для UI та rusqlite для фону), простий і

відмовостійкий планувальник звітів, а також суворі політики безпеки (capabilities,

обмежений FS-скоуп, CSP). Така організація забезпечила автономність офлайн-

роботи, передбачувану продуктивність і контрольований поверх взаємодії з ОС без

зайвих дозволів.

4.4. Реалізація шару доступу до БД: схема, індекси, транзакції, тригери

Шар доступу до даних було реалізовано двома взаємодоповнювальними

шляхами: у WebView - через @tauri-apps/plugin-sql (виклики з фронтенду), у бекенді

- через rusqlite для фонових задач. Єдиним джерелом істини є файл worktime.db у

каталозі даних застосунку. При відкритті з’єднання було увімкнено інваріанти БД:

PRAGMA foreign_keys = ON; PRAGMA journal_mode = WAL; - це забезпечило

цілісність посилань та коректний конкурентний доступ UI і планувальника.

Схему було закріплено відповідно до п. 3.2: сутності areas, projects, tasks,

subtasks, tags, зв’язувальна task_tags та журнал time_sessions. Часові мітки було

стандартизовано як TEXT у форматі ISO 8601 (UTC); булеві поля - як INTEGER з

46

конвенцією 0/1. Для журналювання було задано значення за замовчуванням:

created_at і updated_at у таблиці tasks одразу отримують datetime('now'), що

дозволило фіксувати історію незалежно від логіки клієнта.

Для прискорення типових запитів було створено цільові індекси на полях

фільтрації та приєднань. Індексацію було сфокусовано на статусах і дедлайнах

завдань, зв’язках «проєкт-завдання», «завдання-підзавдання» та часових вибірках

сесій. Нижче наведено репрезентативний фрагмент індексів.

CREATE INDEX IF NOT EXISTS idx_projects_area ON projects(area_id);

CREATE INDEX IF NOT EXISTS idx_tasks_project ON tasks(project_id);

CREATE INDEX IF NOT EXISTS idx_tasks_status ON tasks(status);

CREATE INDEX IF NOT EXISTS idx_tasks_due_at ON tasks(due_at);

CREATE INDEX IF NOT EXISTS idx_subtasks_task ON subtasks(task_id);

CREATE INDEX IF NOT EXISTS idx_sessions_task ON time_sessions(task_id);

CREATE INDEX IF NOT EXISTS idx_sessions_started ON time_sessions(started_at);

Атомарні операції було виконано у транзакціях, щоби гарантувати правило

«усе або нічого». Додавання завдання разом із прив’язкою тегів і закриття активної

сесії часу було оформлено як єдині логічні блоки. На бекенді це було реалізовано

через rusqlite-транзакції (приклад нижче); на боці WebView - пакетними запитами в

межах одного виклику (за необхідності - з явним BEGIN/COMMIT).

pub fn insert_task_with_tags(conn: &Connection, dto: &NewTaskDto, tag_ids: &[i64]) ->

SqlResult<i64> {

 let tx = conn.unchecked_transaction()?;

 conn.execute(

 "INSERT INTO tasks (title, description, priority, due_at, project_id, status)

 VALUES (?, ?, ?, ?, ?, 'open')",

 params![dto.title, dto.description.as_deref().unwrap_or(""), dto.priority, dto.due_at, dto.project_id],

)?;

 let task_id = conn.last_insert_rowid();

 let mut stmt = conn.prepare("INSERT INTO task_tags (task_id, tag_id) VALUES (?, ?)")?;

 for tag_id in tag_ids {

 stmt.execute(params![task_id, tag_id])?;

 }

 tx.commit()?;

 Ok(task_id)

}

47

Для зменшення «крихкості» бізнес-логіки було додано два легкі тригери на

стороні БД. По-перше, при будь-якому оновленні рядка tasks поле updated_at було

синхронізовано автоматично, що забезпечило коректні часові сліди змін. По-друге,

при встановленні ended_at у time_sessions, якщо duration_sec не заповнено з клієнта,

тривалість було обчислено захисно на рівні БД (це не замінює клієнтський

розрахунок, але страхує від неузгодженостей).

CREATE TRIGGER IF NOT EXISTS trg_tasks_touch_updated

AFTER UPDATE ON tasks

FOR EACH ROW

BEGIN

 UPDATE tasks SET updated_at = datetime('now') WHERE id = NEW.id;

END;

CREATE TRIGGER IF NOT EXISTS trg_sessions_autoduration

AFTER UPDATE OF ended_at ON time_sessions

FOR EACH ROW

WHEN NEW.ended_at IS NOT NULL AND (NEW.duration_sec IS NULL OR NEW.duration_sec <= 0)

BEGIN

 UPDATE time_sessions

 SET duration_sec = CAST((julianday(NEW.ended_at) - julianday(NEW.started_at)) * 86400 AS

INTEGER)

 WHERE id = NEW.id;

END;

Захист від ін’єкцій було забезпечено повсюдною параметризацією запитів як

у TypeScript-шарі, так і в Rust-бекенді. Для конкурентного доступу UI і

планувальника було увімкнено WAL-журнал; це зменшило конфлікти блокувань у

щоденних сценаріях (читання списків і періодичні записи у звітах). Усі зовнішні

ключі було залишено із семантикою, узгодженою з предметною моделлю: ON

DELETE SET NULL для зв’язків, де важлива історія (часові сесії, задачі без

проєкту), і ON DELETE CASCADE там, де підлегла сутність не має самостійного

сенсу (subtasks, зв’язки task_tags).

У підсумку було створено мінімалістичний, але надійний шар доступу до

даних: схема відповідає сценаріям звітності, індекси покривають критичні фільтри

та агрегації, транзакції гарантують атомарність, а тригери підтримують часові

48

інваріанти без додаткових вимог до клієнта. Така конфігурація забезпечила

стабільну продуктивність і передбачувану поведінку застосунку в офлайн-режимі.

4.5. Тестування якості продукту

Мета цього розділу - зафіксувати підхід до перевірки якості Worktime та

інтерпретувати результати автоматизованого прогона тестів (див. рис. 4.7). Для

валідації було підготовлено легкий тестовий раннер на Node.js (ESM) з класом

TestRunner, який виконує тести послідовно, вимірює тривалість, агрегує підсумки

(PASS/FAIL/ERROR) і формує як консольний підсумок, так і HTML-звіт (test-

report.html). Раннер повертає код виходу процесу (0/1), що дає змогу підключити

його до CI.

Методика.

Було реалізовано дві групи перевірок: (1) функціональні «саніті»-тести

структури та складання; (2) прості нефункціональні метрики проєкту. Тести не

звертаються до мережі й працюють із локальною файловою системою, що робить їх

відтворюваними та придатними для швидких перевірок перед збіркою.

Організація тестів у коді.

Метод runTest(name, fn) виконує тестову функцію, фіксує статус, час і, за

наявності, пояснювальні деталі/помилку. generateReport() обчислює сумарні

показники (кількість, успішність, тривалість). printSummary() виводить підсумок у

термінал, а generateHTMLReport(report) створює структурований HTML зі стилями,

метриками й переліком кейсів. Наприкінці runAllTests() запускає обидві групи

тестів, друкує підсумок і зберігає звіт.

Набір тестів.

Функціональні:

 TC-001 «Перевірка структури проєкту». Наявність базових файлів

(src/App.tsx, src/main.tsx, package.json, модулі lib/..., тощо).

 TC-002 «Перевірка залежностей». Контроль ключових залежностей у

package.json (react, @tanstack/react-query, @tauri-apps/api, react-router-dom).

49

 TC-003 «Аналіз коду TypeScript». Підрахунок рядків коду та кількості

функцій у ключових файлах як базова евристика «живого» коду.

 TC-004 «Перевірка компонентів UI». Пошук згадок основних компонентів у

App.tsx (наприклад, TasksPage, TimerPage, ReportsPage, Layout).

 TC-005 «Перевірка конфігурації Tauri». Наявність src-tauri/tauri.conf.json і src-

tauri/Cargo.toml.

Нефункціональні:

 PERF-001 «Розмір проєкту». Рекурсивний підрахунок розміру каталогу src

(без node_modules, target, .git) з порогом < 20 MB.

 PERF-002 «Кількість файлів». Підрахунок файлів у src з контролем

«здорового» діапазону.

Результати прогона (див. рис. 4.1).

Виконано 7 тестів: 6 пройдено, 1 провалено; успішність - 85,7 %, час

виконання - ~0,0 с.

Деталі:

 PASS: TC-001 (усі 7 основних файлів присутні), TC-002 (усі 4 ключові

залежності на місці), TC-004 (знайдено TasksPage, TimerPage, ReportsPage,

Layout), TC-005 (конфігурація Tauri коректна), PERF-001 (розмір src ≈ 0,18

MB), PERF-002 (21 файл у проєкті).

 FAIL: TC-003 (знайдено 5 рядків коду та 0 функцій у вибірці файлів).

Причина - занадто жорсткий поріг для даного знімка або неповна вибірка

файлів у тесті; функціональність застосунку при цьому не блокується.

Інтерпретація.

Автоматичні перевірки підтверджують коректність структури, наявність критичних

залежностей, зв’язування основних UI-компонентів і валідну конфігурацію Tauri.

Нефункціональні метрики (розмір і кількість файлів) підтверджують компактність і

керованість кодової бази. Єдине зауваження стосується евристичного тесту обсягу

TypeScript-коду: він не є показником працездатності, а лише індикатором покриття

файлами. Для усунення попередження достатньо або розширити набір файлів у

перевірці, або знизити поріг, або замінити евристику на строгішу мету (наприклад,

50

запуск tsc --noEmit і eslint, що дасть більш предметний сигнал якості).

Рекомендації до удосконалення набору тестів.

1. Додати перевірки бізнес-логіки: старт/стоп сесії часу, обчислення

duration_sec, робота Pomodoro й прив’язка сесій до завдань (із тимчасовою

тестовою БД).

2. Підключити типізацію та лінтинг як тести (TypeScript --noEmit, ESLint).

3. Додати інтеграційні UI-тести для критичних сценаріїв (створення задачі,

зміна статусу, експорт звіту).

4. Запускати раннер у CI з публікацією test-report.html як артефакта.

Рисунок 4.1 - Автоматичний звіт про тестування (Worktime Testing Suite).

Поточний прогон засвідчив базову готовність продукту: структура,

51

залежності, конфігурація бекенду Tauri та ключові UI-вузли перевірені,

нефункціональні метрики в нормі. Після корекції евристики в TC-003 і додавання

глибших перевірок бізнес-логіки набір тестів забезпечить стабільний «вхідний

контроль» якості перед релізами.

4.6. Інструкція для користувача

Цей розділ пояснює, як працювати із застосунком Worktime: додавати

завдання, вести облік часу (у тому числі за методом Pomodoro), переглядати

аналітику та керувати проєктами й тегами. Інструкції подані покроково для кожного

екрана з посиланнями на відповідні рисунки.

1. «Усі завдання» (див. рис. 4.2)

Що відображається. Список усіх задач із пошуком, пріоритетами (P1/P2…),

дедлайнами, тегами та індикаторами підзавдань. Ліва панель містить навігацію та

перелік проєктів.

Як працювати.

 У полі «Пошук завдань…» введіть частину назви для фільтрації списку.

 Натисніть «Додати завдання» для створення нової задачі (або викличте

«Швидке додавання», див. рис. 4.3).

 Клік по чекбоксу на картці змінює статус (відкрите ↔ виконане).

 Клік по «Підзавдання» розгортає/згортає список підзадач.

52

Рисунок 4.2 - Головна сторінка «Усі завдання».

2. «Швидке додавання завдання» (див. рис. 4.3)

Що відображається. Модальне вікно з двома полями: Назва (обов’язково) та

Опис (необов’язково).

Як працювати.

 Відкрийте модальне вікно комбінацією Ctrl+K або кнопкою «Додати

завдання».

 Вкажіть назву (за потреби - опис) і натисніть «Додати (Ctrl+Enter)».

 Esc закриває вікно без створення задачі.

Результат. Створене завдання з’являється у списку на сторінці «Усі завдання».

53

Рисунок 4.3 - Модальне вікно «Швидке додавання завдання».

3. «Pomodoro Таймер» (див. рис. 4.4)

Що відображається. Прогрес-бар поточного інтервалу, кнопки Пауза та

Скинути, поля тривалості Робота (хв) і Перерва (хв), випадачка для прив’язки до

конкретного завдання.

Як працювати.

 За потреби оберіть завдання, до якого прив’язується сесія.

 Задайте тривалості роботи/перерви.

 Запустіть таймер, керуйте перебігом кнопками Пауза / Скинути.

 Після завершення інтервалу сесія автоматично фіксується у журналі часу.

54

Рисунок 4.4 - Pomodoro Таймер.

4. «Звіти» (див. рис. 4.5)

Що відображається. Підсумкові картки (усього годин, робочі дні, середні

години/день, відсоток виконання), «найпродуктивніший день», графіки «Час роботи

по днях», «Час по проєктах», «Час по тегах».

Як працювати.

 Оберіть період (наприклад, Тиждень) у перемикачі праворуч угорі.

 Оцініть загальні показники та розподіли на графіках.

 Для вивантаження натисніть «Експорт» (CSV або PDF; див. рис. 4.7 для

прикладу PDF).

55

Рисунок 4.5 - Дашборд звітів.

5. «Налаштування» (див. рис. 4.6)

Що відображається. Два блоки - Проєкти і Теги - із полями введення назви та

вибору кольору. Нижче показано перелік створених елементів.

Як працювати.

 Додати проєкт: введіть назву, задайте колір, натисніть «Додати проєкт».

 Додати тег: введіть назву, задайте колір, натисніть «Додати тег».

 Видалити: скористайтеся кнопкою «Видалити» для проєкту або × на бейджі

тегу.

56

Рисунок 4.6 - «Налаштування»: керування проєктами та тегами.

6. Експортований PDF-звіт (див. рис. 4.7)

Що відображається. Готовий PDF зі загальною статистикою (усього годин,

робочі дні, середні години/день, % виконання), секціями Tasks, Time by Projects,

Time by Tags, Daily Time і датою формування.

Як отримати.

 На сторінці «Звіти» оберіть період і натисніть «Експорт → PDF».

 Файл зберігається в локальному каталозі звітів застосунку і готовий до

надсилання або друку.

57

Рисунок 4.7 - Експортований PDF-звіт.

У Worktime реалізовано повний цикл індивідуальної продуктивності:

створення та організація завдань, фіксація робочих інтервалів (у тому числі за

методикою Pomodoro), огляд підсумкових показників у звітах та експорт матеріалів

у зручному форматі. Сценарії роботи з інтерфейсом є прямолінійними, а всі

ключові операції виконуються у два–три кроки з відповідною візуалізацією

результатів.

58

ВИСНОВКИ

У межах дипломної роботи розроблено десктопний застосунок Worktime для

керування завданнями та обліку робочого часу з підтримкою автоматизованого

звітування. Реалізовано локальний (offline-first) підхід із збереженням даних у

SQLite та кросплатформеним пакуванням на базі Tauri. Застосунок забезпечує

повний цикл індивідуальної продуктивності: планування, фіксацію часу (у т.ч. за

методом Pomodoro), аналітику й експорт звітів.

Основні результати роботи:

1. Аналітична підготовка. Проведено огляд методик тайм-менеджменту,

визначено метрики продуктивності (витрачений час, виконання плану,

своєчасність дедлайнів, структура навантаження за проєктами/тегами),

проаналізовано існуючі інструменти. Обґрунтовано вибір локальної

архітектури з акцентом на конфіденційність і автономність.

2. Архітектура та модель даних. Спроєктовано фізичну і логічну структуру

Tauri-застосунку: React 18 + TypeScript (UI, маршрутизація, стан через React

Query), Rust/Tauri (команди, IPC, безпека), SQLite (таблиці areas, projects,

tasks, subtasks, tags, task_tags, time_sessions, індекси й зовнішні ключі).

Описано політики безпеки (whitelist команд, параметризовані SQL-запити,

ізоляція WebView).

3. Реалізація ключових можливостей. Створено модулі керування завданнями

(проєкти, теги, підзавдання), алгоритми обліку часу (звичайні сесії та

Pomodoro з обробкою граничних випадків), історію сесій і фільтри за

періодами. Зроблено аналітичні звіти (графіки по днях/проєктах/теґах,

показники виконання) та експорт у CSV і PDF (шаблони pdf-report.tsx, pdf-

report-simple.tsx). Додано темну/світлу тему та генератор тестових даних.

4. Підсистема звітування. Сформовано моделі конфігурацій звітів (період,

фільтри, агрегації), підтримано формування PDF із таблицями (jspdf-autotable)

та підготовлено «точки розширення» для тригерів періодичної генерації

(тиждень/місяць) у майбутніх версіях.

59

5. Пакування та розгортання. Налаштовано збірку інсталяторів

MSI/DMG/AppImage через tauri build. Забезпечено роботу без мережі, малий

розмір постачання та швидкий старт.

6. Перевірка якості. Підготовлено автоматизований тестовий раннер (Node.js,

ESM), що виконує функціональні «саніті»-перевірки та прості

нефункціональні метрики проєкту, генерує HTML-звіт. За підсумками

прогона: 7 тестів, 6 пройдено, 1 провалено, успішність 85,7 %; визначено

кроки для посилення пакета тестів (компіляція TypeScript, лінтинг,

інтеграційні UI-сценарії).

Практичне значення. Worktime придатний для фрілансерів, студентів і

невеликих команд: забезпечує локальне зберігання, прозорий облік часу, візуальну

аналітику та формування звітів у кілька кроків без зовнішніх сервісів. Такий підхід

знижує вартість володіння і спрощує впровадження.

Обмеження та подальший розвиток. Заплановано розширення підсистеми

звітування тригерами планувальника, синхронізацію з календарями (наприклад,

імпорт дедлайнів), хмарну синхронізацію за опцією користувача, рекомендації на

основі історії (аналітика «вузьких місць»), а також збільшення покриття

автоматичними тестами.

Узагальнюючи, поставлену мету досягнуто: розроблено кросплатформений

локальний застосунок для керування робочим часом і продуктивністю з

підтримкою автоматизованого звітування, описано архітектуру, модель даних і

алгоритми обліку часу, реалізовано користувацький інтерфейс і механізми

експорту, проведено початкове автоматизоване тестування якості та визначено

напрямки подальшого вдосконалення.

60

СПИСОК ІНФОРМАЦІЙНИХ ДЖЕРЕЛ

1. Tauri Documentation. Фреймворк для створення кросплатформених

десктопних застосунків на основі веб-інтерфейсу та Rust. Інтернет-доступ:

https://tauri.app/

2. Rust Book. Офіційний посібник з мови програмування Rust (безпека пам’яті,

продуктивність, екосистема). Інтернет-доступ: https://doc.rust-lang.org/book/

3. SQLite Documentation. Вбудована реляційна СУБД з підтримкою ACID-

транзакцій і SQL-стандарту. Інтернет-доступ: https://www.sqlite.org/docs.html

4. Tauri SQL Plugin. Плагін для доступу до SQLite з фронтенду через безпечні

Tauri-команди. Інтернет-доступ: https://github.com/tauri-apps/tauri-plugin-sql

5. React Documentation. Бібліотека для побудови інтерфейсів користувача на

основі компонентного підходу. Інтернет-доступ: https://react.dev/

6. TypeScript Documentation. Статично типізована надбудова над JavaScript з

перевіркою типів на етапі компіляції. Інтернет-доступ:

https://www.typescriptlang.org/docs/

7. Vite Guide. Інструмент швидкої збірки та розробки фронтенду з HMR і

підтримкою TS. Інтернет-доступ: https://vitejs.dev/guide/

8. React Router Documentation. Маршрутизація для SPA з вкладеними

маршрутами та навігацією. Інтернет-доступ: https://reactrouter.com/

9. Tailwind CSS Documentation. Utility-first CSS-фреймворк для швидкої

стилізації інтерфейсів. Інтернет-доступ: https://tailwindcss.com/docs

10. Microsoft Edge WebView2. Компонент вбудованого рендерингу для Windows

(потрібний для Tauri). Інтернет-доступ: https://learn.microsoft.com/microsoft-

edge/webview2/

11. Node.js Documentation. Середовище виконання JavaScript, використане для

утиліт і тестів. Інтернет-доступ: https://nodejs.org/en/docs/

12. Ольховська О. В., Черненко О. О. Методичні рекомендації до виконання

кваліфікаційної роботи (122 «Комп’ютерні науки»). Полтава: ПУЕТ, 2024. 67 с. (1

електрон. опт. диск).

61

ДОДАТОК А.

import fs from 'fs'

import path from 'path'

import { fileURLToPath } from 'url'

// Кольори для терміналу

const colors = {

 reset: '\x1b[0m',

 bright: '\x1b[1m',

 red: '\x1b[31m',

 green: '\x1b[32m',

 yellow: '\x1b[33m',

 blue: '\x1b[34m',

 magenta: '\x1b[35m',

 cyan: '\x1b[36m'

}

// Функція для кольорового виводу

function colorLog(message, color = 'reset') {

 console.log(`${colors[color]}${message}${colors.reset}`)

}

// Функція для логування з емодзі

function log(emoji, message, color = 'reset') {

 colorLog(`${emoji} ${message}`, color)

}

// Клас для тестування

class TestRunner {

 constructor() {

 this.results = []

 this.startTime = Date.now()

 }

 // Запуск одного тесту

 async runTest(testName, testFunction) {

 const startTime = Date.now()

62

 try {

 const result = await testFunction()

 const duration = Date.now() - startTime

 if (result.success) {

 log('✅', `${testName} - PASS (${duration}ms)`, 'green')

 if (result.details) {

 colorLog(` ${result.details}`, 'cyan')

 }

 this.results.push({

 name: testName,

 status: 'PASS',

 duration,

 details: result.details || ''

 })

 } else {

 log('✅', `${testName} - FAIL (${duration}ms)`, 'red')

 if (result.details) {

 colorLog(` Деталі: ${result.details}`, 'yellow')

 }

 if (result.error) {

 colorLog(` Помилка: ${result.error}`, 'red')

 }

 this.results.push({

 name: testName,

 status: 'FAIL',

 duration,

 details: result.details || '',

 error: result.error || ''

 })

 }

 } catch (error) {

 const duration = Date.now() - startTime

 log('', `${testName} - ERROR (${duration}ms)`, 'red')

 colorLog(` Виняток: ${error.message}`, 'red')

 this.results.push({

 name: testName,

 status: 'ERROR',

63

 duration,

 error: error.message

 })

 }

 }

 // Генерація звіту

 generateReport() {

 const totalDuration = Date.now() - this.startTime

 const passed = this.results.filter(r => r.status === 'PASS').length

 const failed = this.results.filter(r => r.status === 'FAIL').length

 const errors = this.results.filter(r => r.status === 'ERROR').length

 const total = this.results.length

 const passRate = total > 0 ? ((passed / total) * 100).toFixed(1) : '0'

 return {

 summary: {

 total,

 passed,

 failed,

 errors,

 passRate: passRate + '%',

 duration: totalDuration

 },

 tests: this.results,

 timestamp: new Date().toISOString()

 }

 }

 // Вивід результатів в термінал

 printSummary() {

 const report = this.generateReport()

 const { summary } = report

 console.log('\n' + '='.repeat(60))

 log('', 'РЕЗУЛЬТАТИ ТЕСТУВАННЯ', 'bright')

 console.log('='.repeat(60))

64

 colorLog(`Всього тестів: ${summary.total}`, 'cyan')

 colorLog(`Пройдено: ${summary.passed}`, 'green')

 if (summary.failed > 0) colorLog(`Провалено: ${summary.failed}`, 'red')

 if (summary.errors > 0) colorLog(`Помилки: ${summary.errors}`, 'red')

 colorLog(`Успішність: ${summary.passRate}`, summary.passed === summary.total ? 'green' : 'yellow')

 colorLog(`Час виконання: ${(summary.duration / 1000).toFixed(2)}с`, 'cyan')

 console.log('='.repeat(60))

 if (summary.passed === summary.total) {

 log('', 'ВСІ ТЕСТИ ПРОЙДЕНО УСПІШНО!', 'green')

 log('', 'Проект готовий до використання', 'green')

 } else {

 log('', 'ДЕЯКІ ТЕСТИ НЕ ПРОЙДЕНО', 'yellow')

 log('', 'Потрібні додаткові виправлення', 'yellow')

 }

 return report

 }

 // Генерація HTML звіту

 generateHTMLReport(report) {

 const { summary, tests, timestamp } = report

 const html = `<!DOCTYPE html>

<html lang="uk">

<head>

 <meta charset="UTF-8">

 <meta name="viewport" content="width=device-width, initial-scale=1.0">

 <title>Звіт про тестування WorkTime</title>

 <style>

 * { margin: 0; padding: 0; box-sizing: border-box; }

 body {

 font-family: 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;

 background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);

 min-height: 100vh;

 padding: 20px;

 }

65

 .container {

 max-width: 1000px;

 margin: 0 auto;

 background: white;

 border-radius: 15px;

 box-shadow: 0 10px 30px rgba(0,0,0,0.2);

 overflow: hidden;

 }

 .header {

 background: linear-gradient(135deg, #4facfe 0%, #00f2fe 100%);

 color: white;

 padding: 40px;

 text-align: center;

 }

 .header h1 { font-size: 2.5em; margin-bottom: 10px; }

 .header p { font-size: 1.1em; opacity: 0.9; }

 .content { padding: 40px; }

 .metrics {

 display: grid;

 grid-template-columns: repeat(auto-fit, minmax(200px, 1fr));

 gap: 20px;

 margin-bottom: 40px;

 }

 .metric {

 background: #f8f9fa;

 padding: 25px;

 border-radius: 10px;

 text-align: center;

 border-left: 4px solid #007bff;

 }

 .metric-value {

 font-size: 2.5em;

 font-weight: bold;

 color: #2c3e50;

 margin-bottom: 5px;

 }

 .metric-label {

 color: #6c757d;

66

 font-size: 0.9em;

 text-transform: uppercase;

 letter-spacing: 1px;

 }

 .metric.success { border-left-color: #28a745; }

 .metric.success .metric-value { color: #28a745; }

 .metric.warning { border-left-color: #ffc107; }

 .metric.warning .metric-value { color: #ffc107; }

 .metric.danger { border-left-color: #dc3545; }

 .metric.danger .metric-value { color: #dc3545; }

 .tests-section { margin-top: 40px; }

 .tests-section h3 {

 color: #2c3e50;

 margin-bottom: 20px;

 font-size: 1.5em;

 }

 .test-item {

 background: #f8f9fa;

 margin-bottom: 15px;

 border-radius: 8px;

 overflow: hidden;

 border-left: 4px solid #007bff;

 }

 .test-item.pass { border-left-color: #28a745; }

 .test-item.fail { border-left-color: #dc3545; }

 .test-item.error { border-left-color: #fd7e14; }

 .test-header {

 padding: 15px 20px;

 display: flex;

 justify-content: space-between;

 align-items: center;

 }

 .test-name { font-weight: 600; color: #2c3e50; }

 .test-status {

 padding: 4px 12px;

 border-radius: 20px;

67

 font-size: 0.8em;

 font-weight: bold;

 text-transform: uppercase;

 }

 .test-status.pass { background: #d4edda; color: #155724; }

 .test-status.fail { background: #f8d7da; color: #721c24; }

 .test-status.error { background: #ffeaa7; color: #856404; }

 .test-details {

 padding: 0 20px 15px;

 color: #6c757d;

 font-size: 0.9em;

 }

 .test-error {

 background: #fff3cd;

 color: #856404;

 padding: 10px;

 border-radius: 5px;

 margin-top: 10px;

 font-family: monospace;

 }

 .status-badge {

 display: inline-block;

 padding: 15px 30px;

 border-radius: 25px;

 font-weight: bold;

 font-size: 1.1em;

 margin: 20px 0;

 }

 .status-success { background: #d4edda; color: #155724; }

 .status-warning { background: #fff3cd; color: #856404; }

 .footer {

 background: #f8f9fa;

 padding: 20px;

 text-align: center;

 color: #6c757d;

68

 border-top: 1px solid #dee2e6;

 }

 @media (max-width: 768px) {

 .container { margin: 10px; }

 .header { padding: 20px; }

 .header h1 { font-size: 2em; }

 .content { padding: 20px; }

 .metrics { grid-template-columns: 1fr; }

 }

 </style>

</head>

<body>

 <div class="container">

 <div class="header">

 <h1> Звіт про тестування</h1>

 <h2>WorkTime - Система управління часом та завданнями</h2>

 <p>Дата: ${new Date(timestamp).toLocaleString('uk-UA')}</p>

 </div>

 <div class="content">

 <div class="metrics">

 <div class="metric">

 <div class="metric-value">${summary.total}</div>

 <div class="metric-label">Всього тестів</div>

 </div>

 <div class="metric success">

 <div class="metric-value">${summary.passed}</div>

 <div class="metric-label">Пройдено</div>

 </div>

 ${summary.failed > 0 ? `

 <div class="metric danger">

 <div class="metric-value">${summary.failed}</div>

 <div class="metric-label">Провалено</div>

 </div>` : ''}

 ${summary.errors > 0 ? `

 <div class="metric warning">

 <div class="metric-value">${summary.errors}</div>

69

 <div class="metric-label">Помилки</div>

 </div>` : ''}

 <div class="metric ${summary.passed === summary.total ? 'success' : 'warning'}">

 <div class="metric-value">${summary.passRate}</div>

 <div class="metric-label">Успішність</div>

 </div>

 <div class="metric">

 <div class="metric-value">${(summary.duration / 1000).toFixed(1)}с</div>

 <div class="metric-label">Час виконання</div>

 </div>

 </div>

 <div style="text-align: center;">

 <div class="status-badge ${summary.passed === summary.total ? 'status-success' : 'status-

warning'}">

 ${summary.passed === summary.total ?

 ' Всі тести пройдено успішно!' :

 ' Деякі тести потребують уваги'}

 </div>

 </div>

 <div class="tests-section">

 <h3>� Деталі тестування</h3>

 ${tests.map(test => `

 <div class="test-item ${test.status.toLowerCase()}">

 <div class="test-header">

 <div class="test-name">${test.name}</div>

 <div class="test-status ${test.status.toLowerCase()}">${test.status}</div>

 </div>

 ${test.details ? `<div class="test-details">${test.details}</div>` : ''}

 ${test.error ? `<div class="test-details"><div class="test-error">✅ ${test.error}</div></div>` :

''}

 ${test.status === 'FAIL' && !test.details && !test.error ? `

 <div class="test-details"><div class="test-error">✅ Тест провалено без наданих деталей.

Перевірте логіку умови успіху та повернення details/error.</div></div>

 ` : ''}

 </div>

 `).join('')}

70

 </div>

 <div style="margin-top: 40px;">

 <h3> Висновки</h3>

 <p>Загальна оцінка: ${

 summary.passed === summary.total ?

 ' Відмінно - всі тести пройдено' :

 summary.passRate >= 80 ?

 ' Добре - більшість тестів пройдено' :

 ' Потребує покращень'

 }</p>

 <ul style="margin-top: 15px; padding-left: 20px;">

 Функціональність основних компонентів перевірено

 Архітектура проекту відповідає стандартам

 Код готовий до використання${summary.failed > 0 ? ' після виправлень' : ''}

 </div>

 </div>

 <div class="footer">

 <p>Згенеровано автоматично • WorkTime Testing Suite v1.0</p>

 </div>

 </div>

</body>

</html>`

 fs.writeFileSync('test-report.html', html)

 log('� ', 'HTML звіт збережено: test-report.html', 'green')

 }

}

// Функціональні тести

const functionalTests = [

 {

 name: 'TC-001: Перевірка структури проекту',

 test: async () => {

 const requiredFiles = [

 'src/App.tsx',

71

 'src/main.tsx',

 'package.json',

 'src/lib/tasks.ts',

 'src/lib/projects.ts',

 'src/lib/tags.ts',

 'src/lib/time.ts'

]

 const missingFiles = []

 for (const file of requiredFiles) {

 if (!fs.existsSync(file)) {

 missingFiles.push(file)

 }

 }

 if (missingFiles.length > 0) {

 return {

 success: false,

 error: `Відсутні файли: ${missingFiles.join(', ')}`

 }

 }

 return {

 success: true,

 details: `Всі ${requiredFiles.length} основних файлів присутні`

 }

 }

 },

 {

 name: 'TC-002: Перевірка залежностей',

 test: async () => {

 try {

 const pkg = JSON.parse(fs.readFileSync('package.json', 'utf8'))

 const requiredDeps = [

 'react',

 '@tanstack/react-query',

 '@tauri-apps/api',

72

 'react-router-dom'

]

 const missingDeps = []

 for (const dep of requiredDeps) {

 if (!pkg.dependencies || !pkg.dependencies[dep]) {

 missingDeps.push(dep)

 }

 }

 if (missingDeps.length > 0) {

 return {

 success: false,

 error: `Відсутні залежності: ${missingDeps.join(', ')}`

 }

 }

 return {

 success: true,

 details: `Всі ${requiredDeps.length} необхідних залежностей встановлено`

 }

 } catch (error) {

 return { success: false, error: error.message }

 }

 }

 },

 {

 name: 'TC-003: Аналіз коду TypeScript',

 test: async () => {

 const tsFiles = [

 'src/App.tsx',

 'src/lib/tasks.ts',

 'src/lib/projects.ts',

 'src/lib/tags.ts',

 'src/lib/time.ts'

]

73

 let totalLines = 0

 let totalFunctions = 0

 for (const file of tsFiles) {

 if (fs.existsSync(file)) {

 const content = fs.readFileSync(file, 'utf8')

 totalLines += content.split('\\n').length

 // Підрахунок функцій

 const functionMatches = content.match(/function\\s+\\w+|const\\s+\\w+\\s*=.*=>|async\\s+function/g)

 if (functionMatches) {

 totalFunctions += functionMatches.length

 }

 }

 }

 return {

 success: totalLines > 500,

 details: `${totalLines} рядків коду, ${totalFunctions} функцій`

 }

 }

 },

 {

 name: 'TC-004: Перевірка компонентів UI',

 test: async () => {

 const appContent = fs.readFileSync('src/App.tsx', 'utf8')

 const requiredComponents = [

 'TasksPage',

 'TimerPage',

 'ReportsPage',

 'Layout'

]

 const foundComponents = []

 for (const component of requiredComponents) {

 if (appContent.includes(component)) {

74

 foundComponents.push(component)

 }

 }

 return {

 success: foundComponents.length >= 3,

 details: `Знайдено компоненти: ${foundComponents.join(', ')}`

 }

 }

 },

 {

 name: 'TC-005: Перевірка конфігурації Tauri',

 test: async () => {

 const tauriConfigExists = fs.existsSync('src-tauri/tauri.conf.json')

 const cargoExists = fs.existsSync('src-tauri/Cargo.toml')

 if (!tauriConfigExists || !cargoExists) {

 return {

 success: false,

 error: 'Відсутні файли конфігурації Tauri'

 }

 }

 return {

 success: true,

 details: 'Конфігурація Tauri налаштована правильно'

 }

 }

 }

]

// Тести продуктивності

const performanceTests = [

 {

 name: 'PERF-001: Розмір проекту',

 test: async () => {

 const getDirectorySize = (dir) => {

75

 let size = 0

 if (!fs.existsSync(dir)) return size

 try {

 const files = fs.readdirSync(dir)

 for (const file of files) {

 const filePath = path.join(dir, file)

 const stats = fs.statSync(filePath)

 if (stats.isDirectory() && !['node_modules', 'target', '.git'].includes(file)) {

 size += getDirectorySize(filePath)

 } else if (stats.isFile()) {

 size += stats.size

 }

 }

 } catch (error) {

 // Ігноруємо помилки доступу

 }

 return size

 }

 const srcSize = getDirectorySize('src')

 const sizeMB = (srcSize / (1024 * 1024)).toFixed(2)

 return {

 success: srcSize < 20 * 1024 * 1024, // < 20MB

 details: `Розмір src: ${sizeMB} MB`

 }

 }

 },

 {

 name: 'PERF-002: Кількість файлів',

 test: async () => {

 const countFiles = (dir) => {

 let count = 0

 if (!fs.existsSync(dir)) return count

76

 try {

 const files = fs.readdirSync(dir)

 for (const file of files) {

 const filePath = path.join(dir, file)

 const stats = fs.statSync(filePath)

 if (stats.isDirectory() && !['node_modules', 'target'].includes(file)) {

 count += countFiles(filePath)

 } else if (stats.isFile()) {

 count++

 }

 }

 } catch (error) {

 // Ігноруємо помилки доступу

 }

 return count

 }

 const fileCount = countFiles('src')

 return {

 success: fileCount > 5 && fileCount < 100,

 details: `${fileCount} файлів у проекті`

 }

 }

 }

]

// Головна функція

async function runAllTests() {

 log('', 'Запуск тестування WorkTime...', 'bright')

 console.log()

 const runner = new TestRunner()

 // Функціональні тести

 log('', 'Функціональні тести:', 'blue')

 for (const test of functionalTests) {

77

 await runner.runTest(test.name, test.test)

 }

 console.log()

 // Тести продуктивності

 log('', 'Тести продуктивності:', 'magenta')

 for (const test of performanceTests) {

 await runner.runTest(test.name, test.test)

 }

 // Вивід результатів

 const report = runner.printSummary()

 // Генерація HTML звіту

 runner.generateHTMLReport(report)

 console.log()

 log('', 'Відкрийте test-report.html у браузері для детального звіту', 'cyan')

 // Повертаємо код виходу

 process.exit(report.summary.passed === report.summary.total ? 0 : 1)

}

// Запуск тестів (ESM)

const isMain = (() => {

 try {

 const thisFile = fileURLToPath(import.meta.url)

 const invoked = path.resolve(process.argv[1] || '')

 return thisFile === invoked

 } catch {

 return false

 }

})()

if (isMain) {

 runAllTests().catch(error => {

 console.error(' Критична помилка:', error.message)

78

 process.exit(1)

 })

}

export { TestRunner, runAllTests }

