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OPTIMIZATION PROBLEM ON PERMUTATIONS WITH LINEAR-FRACTIONAL
OBJECTIVE FUNCTION: PROPERTIES OF THE SET OF ADMISSIBLE SOLUTIONS

O. A. Emets  and  L. M. Kolechkina UDC 519.85

We consider an optimization problem on permutations with a linear-fractional objective function.  We
investigate the properties of the domain of admissible solutions of the problem. 

In recent years, a great number of works devoted to the investigation of problems of combinatorial optimization
(in particular, problems on Euclidean combinatorial sets and with linear-fractional objective functions) have been
published. 

The aim of these investigations is to study the properties of objective functionals on combinatorial sets, deter-
mine and justify the properties of admissible sets in problems of this type, and develop methods for their solution.
In [1 – 15], various aspects of the solution of the problems indicated are considered.  For this purpose, one often uses
the methods developed in [16].  In the present paper, we consider an optimization problem with linear-fractional ob-
jective function on permutations. 

Let us introduce necessary terminology and present certain facts from [5] that are necessary for what follows.
A collection of elements that may contain equal elements is called a multiset.  A multiset  A  is defined by its support
S ( A ),  i.e., by the set of all different elements of this multiset, and multiplicity, i.e., the number of repetitions of each

element of the support of this multiset.  We denote the set of the first  k  natural numbers by  Jk  and  Jk
0  =

  Jk U 0{ } .

Consider a multiset of real numbers  G = g gk1, ,…{ }  with support  s ( G ) = e en1, ,…{ },  where  e  j ∈  R 
1  for

any  i ∈ Jn ,  and the multiplicities of elements  k ( e j ) =  η j ,  where  i ∈ Jn ,  n ≤ k,  and, furthermore, 

g 1  ≥  g 2  ≥ … ≥  g k  ≥  0,      e 1  >  e 2  > … > e n  ≥  0, (1)

k 0  =  0,      k 1  =  η 1,      k 2  =  η 1  +  η 2, … , k n  =  η 1  +  η 2  + … +  η n 
, (2)

and  g 1 = … = gk1
 = e 1 

, … , gkn − +1 1 = … = g k = e n . 

The set of all ordered  k-samples from the multiset  G  forms the general set of permutations  E G Rkn
k( ) ⊂ .

The convex hull of the set  Ekn  = E Gkn( )  is called the general permutable polyhedron  Πkn G( ) ,  which is described
[5, 9] by the system 
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where  ω   is the number of elements in  ω. 
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Let us give a criterion for a vertex of  Πkn G( )   [5], which is necessary for what follows.  If  x = (  x 1 , … , x k )  is
a vertex of  Πkn G( ) ,  then 
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where  αk
k   is the last element in  Jk  (the superscript denotes the number of the subset and the subscript denotes the

number of the element in the subset) and, conversely, if the conditions indicated above are satisfied, then  x  is a ver-
tex of the general permutable polyhedron  Πkn G( ) . 

Statement of the Problem.  Let us find a pair  F x x( ),* *   such that 
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(5)

under the condition 

X  =  ( x 1 , … , x k ) ∈ E G Rkn
k( ) ⊂ , (6)

c d Ri i, ∈ 1.

From problem (5), (6), we pass to the problem with a linear objective function.  For this purpose, we denote 

y d x
i
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i i0
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−

∑ ,      y x yi i= 0,      i ∈ Jk. (7)

Then  α E G E Rkn
k( )( ) = ⊂ + 1,  where  α  is mapping (7).  Assume that  y0 > 0  (otherwise, we can change the sign

of the numerator) and  yi ≥ 0,  i ∈ Jk .  In the problems on permutations with linear objective functions, the properties

of  Πkn G( )  play an important role because, as is known [5, 9],  vert Πkn G( ) = E Gkn( ),  where  vert M  is the set of

vertices of the polyhedron  M. 

Consider the image of  Πkn G( )  under the mapping  α.  Substituting  y 0  and  yi  into (3) and (4), we obtain 
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y 0  >  0,      y i  ≥  0,      ∀ ⊂i Jk .
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The set defined by system (8) – (10) is denoted by  Q G Rkn
k( ) ⊂ + 1.  Then problem (5), (6) reduces to the determina-

tion of the ordered pair 

F x F y c y
y R i

k

i ik
( ) ( )* *= ′ =

∈ =
+ ∑extr

1
1

,      y c y
y R i

k

i i
k

* =
∈ =+

∑arg extr
1 1

(11)

under the condition 

y  =  ( y 0,  ,y 1 , … , y k )  ∈  E Rk⊂ + 1. (12)

Thus, let us investigate the structure of the convex hull of  E.  In the present paper, we consider the problem of
investigation of the properties of the admissible set for problem (11), (12), to which problem (5), (6) is reduced.
First, we consider the properties of  Q Gkn( ). 

Properties of the Set  Qkn  ( G ) .  As is known [1, p. 17], a convex cone is the set of solutions of a system of

homogeneous linear inequalities, and a pyramid is the convex hull of a polyhedron  Q  (the base of the pyramid) and
a point that does not belong to  Q  (the vertex of the pyramid).  Therefore, system (8), (9) defines a convex polyhe-
dral cone  Q  with the vertex  O(0, … , 0),  and relation (10) defines a hyperplane that intersects the cone and does
not contain its vertex.  The polyhedron  Q Gkn( )  is the base of a pyramid.  In order to consider the faces of the poly-

hedron  Q Gkn( ),  we first prove the following lemma on the faces of the cone  K Gkn
0 ( ): 

Lemma 1.

I. If  F   is an  m-face  (  m ∈  Jk – 1 )  o f   K Gkn
0 ( ),  then there exist sets  ω  1 ⊂… ⊂ ω  k + 1 – m  = Jk  f o r

which the inequalities in (8) turn into the equalities for any  y ∈  F   ( F  is the set of solutions of the

system obtained from (8), (9) by the replacement of the inequalities in (8) by the inequalities for  ω =

ω σ  with  σ ∈ Jk – m  ).

II. If, for sets  ω 1 ⊂… ⊂ ω λ = Jk ,  the inequalities in (8) are replaced by the equalities, then the set  F  of

solutions of (8), (9) is an  m-face of  K Gkn
0 ( ),  where 

m  =  dim F  =  ( )k + − + − −( ){ }−∑1 11λ ω ωσ σ (13)

and the summation is carried out over all  σ  ∈  Jλ  for each of which there exists  j  ∈  Jn  such that

kj − 1 ≤ ωσ − 1  ≤ ωσ  ≤ kj   ω0 0=( ) .

Proof.  I.  Assume that  Ω  is the collection of all subsets  ω ⊆ Jk  for which the corresponding restrictions in

(8), (9) are severe for  F, ω ′, ω ′′ ∈ Ω.  We show that  ω ′ U  ω ′′ ∈ Ω  and  ω ′ I  ω ′′ ∈ Ω.  If  y = ( y 0,  y 1 , … , y k ) ∈ F,
then 
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Relation (14) follows from the equalities  ω  ′ = A 1  U  A  12  and  ω  ′′ = A 2   U  A  12 ,  where  A  1 = ω ′ \ ω ′′  and  A  2 =

ω ′′ \ ω ′.  Then  ω ′   I  ω ′′ = A 12   and  ω ′   U  ω ′′ = A 1   U  A 2  U  A 12 .  We investigate the inequality in (14).  Let 
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A1 1= α ,      A2 2= α ,      A12 12= α :  ′ = +ω α α1 12,

′′ = +ω α α2 12,        ′ ′′ = + +ω ω α α αU 1 12 2 ,       ′ ′′ =ω ω αI 12. (15)

Substituting (15) in (14), we get 
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.

We divide this inequality by  y 0  ( y 0 > 0).  Note that the second term on the right-hand side of this inequality
contains the most part of the numbers  i  from  1  to  α α α1 12 2+ + .  Since relation (1) is true, we establish (if all
g i  from the first one to the  ( α α α1 12 2+ +  ) th one are not equal) that the right-hand side of the last inequality can

be smaller than the left-hand side.  On the other hand, system (8), (9) contains restrictions for  ω = ω ′   U  ω  ′′  and

ω = ω ′   I  ω ′′,  which turn into the equalities for  y ∈ F.  Therefore,  ω ′   I  ω ′′ ∈ Ω  and  ω ′   U  ω ′′ ∈ Ω,  which was to
be proved. 

Assume that, for  ω ′ ∈ Ω  and  ω ′′ ∈ Ω,  the following condition is satisfied for certain  j ∈ Jn : 

′ ≤ ≤ ′′ω ωkj  . (16) 

We prove that  ω ′ ⊆ ω ′′  by contradiction.  Let  ω ′ ∉ ω ′′.  Consider 
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The second and the fourth sum on the right-hand side of (17) contain the same number of terms.  This can be veri-
fied by the substitution of (15) into (17), namely, 
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Taking (1) into account, we get 
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whence, omitting the difference and taking (16) into account, we obtain 

 i
i

i
i

i
i

i
ig y g y g y g y

=

′

=

′′

=

′ ′′

=

′ ′′

∑ ∑ ∑ ∑+ > +
1

0
1

0
1

0
1

0

ω ω ω ω ω ωI U

,

which contradicts the conclusion about the equality in (14).  In view of (1), it is necessary to consider the following
cases: 

(i) the second and the fourth sum with respect to  i  in (18) begin with the same number; 
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(ii) the second and the fourth sum with respect to  i  in (18) begin with different numbers  i,  provided that
g i  are equal. 

Case (i).  Consider the difference from (17), namely, 
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ig y g y
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Since the summation begins with the same number  i,  we equate the lower limits.  As a result, we get    ′ ′′ +ω ωI 1 =

′′ +ω 1,  or  α α α12 12 2= + ,  whence  α  2 = 0.  Therefore,  ω  ′′ ⊆ ω ′,  which contradicts the assumption made
above. 

Case (ii).  Consider  G = g g g g g gz n k1, , , , , , , , ,… … … … …{ }α β .  Let  g  z = … = g α = … = g  β = … = g  n = g,

ω ′ = {
 
α, α + 1, … , α + α  12 + α  1 

} ,  and  ω ′′ = {
 
β, β + 1, … , β + α  12 + α  2 

} .  Then  ′ω  = α  1 + α  12 
  and  ′′ω  =

α  2 + α  12 .  It follows from (1) that 

k 0  =  0, … , k t – 2  =  z  –  1,   k t – 1  =  n,      k t 
  =  p, … , k n  =  k, (19)

whence  0 ≤ z – 1 < n < p ≤ k.  It follows from the second and the fourth sum in equality (18) that 

z  ≤  α  12  +  1  ≤  n,      z  ≤  α  1  +  α 12  +  α 2  ≤  n, (20)

where  z  is the index of a certain element  g j ,  j ∈ Jk ,  in the multiset  G. 
Taking into account condition (16) and relation (15), we get 

α  1  +  α 12  ≤  k j  ≤  α  2  +  α 12 . (21)

For equal  g i ,  where  i ∈ Jn \ Jz – 1 ,  we have  α > z – 1,  β ≥ α,  α  1 + α  12 + α ≤ n,  and  β + α  12 + α  2 ≤ n. 
By virtue of (20) and (21), we obtain 

z  ≤  α  12  +  1  ≤  α  1  +  α 12  ≤  α  2  +  α 12  <  n. (22)

Consider the following two cases:

(a) α  12 + 1 = α  1 + α  12 ;

(b) α  1 + α  12 = α  2 + + α  12 .

We have  α 1 = 1  in case (a) and  α 1 = α  2  in case (b).  Combining these cases and taking (21) into account, we

get  k j = 1 + α  12  and, by virtue of (20), we have  z ≤ k j ≤ n.  Relations (19) yield  k t – 2 ≤ k j ≤ k t – 1 ,  whence  k j =

k t – 2 = z – 1  and  k j + 1 = k t – 1 = n.  Then 

k j  ≤  ′ ≤ ′′ω ω   ≤  k j + 1. (23)
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Hence,  ω ′ ⊆ ω ′′.  Consider  ω ′, ω ′′ ∈ Ω  for which relation (23) holds for every  j ∈ Jp−1.  The condition 

  ′ + ′′ = ′ ′′ + ′ ′′ω ω ω ω ω ωU I (24)

and relation (23) yield 

k j  ≤    ′ ′′ω ωI   ≤   ′ ′′ω ωU   ≤  k j + 1 . (25)

Let us verify this fact.  Taking conditions (15) and (23) into account, we get 

k j  ≤  α  1  +  α 12  ≤  α  2  +  α 12 ≤  k j + 1 . (26)

The first inequality in (26) is true for every  α  1 ≥ 0.  Consider  min( )α α1 12+ .  For  α  1 = 0,  the minimum  α  12 =

  ′ ′′ω ωI  .  Therefore, the first inequality in (25) is true because 

k j  ≤  α  12  ≤  k j + 1 . (27)

Consider the second inequality, representing it, in view of (15), in the following form:  α 1  +  α 2  +  α 12 ≤ k j + 1.  For

ω ′, ω ′′ ∈ Ω,  according to (23) the following conditions are satisfied: 

k j  ≤  ′ω   ≤  k j + 1 , (28)

k j  ≤  ′′ω   ≤  k j + 1 . (29)

First, we add relations (28) and (29) together.  As a result, we obtain 

2 k j  ≤  ′ω  + ′′ω   ≤  2 k j + 1 , (30)

2 k j  ≤  α  1  +  α 12  +  α 2  +  α 12   ≤  2 k j + 1 . (31)

Then, subtracting (27) from (31), we get 

k j  +  ( k j – k j + 1 ) ≤  α  1  +  α 2  +  α 12  ≤  k j + 1  +  ( k j + 1 – k j  ). (32)

The first inequality in (32) has been proved above.  Consider the second inequality, taking into account that  k j + 1 –

k j  > 0.  The following two cases are possible: 

(i) α  1 + α  2 + α  12  ≤  k j + 1  ≤  k j + 1 + ( k j + 1 – k j  ); 

(ii) k j + 1  ≤  α  1 + α  2 + α  12  ≤  k j + 1 + ( k j + 1 – k j  ). 

We begin with case (ii), taking (27) into account.  Since the number of elements in  ω  ′  and  ω  ′′  is determined

by formulas (15), we establish, by virtue of the fact that  α 1,  α  2,  and  α 12  may be equal to zero, that the following
cases are possible: 
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(a) α  1 = 0  and  k j ≤ α  12 ≤ k j + 1 ≤ α  2 + α  12 
,  which is impossible according to (23); 

(b) α  2 = 0  and  k j ≤ α  12 + α  1 ≤ k j + 1 ≤ α  1 + α  12 
,  which is impossible according to what has been proved

above; 

(c) α  12 
 = 0  and  k j ≤ α  1 ≤ k j + 1 ≤ α  2 + α  12 

,  which is impossible according to (23). 

According to (a) – (c), we can conclude that case (ii) is impossible, i.e., case (i) takes place.  Therefore, for

ω ′, ω ′′ ∈ Ω,  relation (25) is true.  For every  j ∈  Jp –1 ,  we denote by  Ωj  the collection of all subsets  ω ∈ Ω  for
which 

k j  ≤  ω   ≤  k j + 1 , (33)

and by  ω*  and  ω**  the subsets from  Ω j  with the minimum and maximum number of elements.  It follows from

the results obtained above that if  ω ∈ Ωj  ,  then 

ω*  ⊆  ω  ⊆  ω**. (34)

The converse statement is also true, namely, if  ω  satisfies (34), then  ω ∈ Ωj ,  i.e., if  y ∈ F  and  s ∈ ω** \ ω*,  then 

s
s jy e y

∈
+∑ =

ω ω
ω ω

** *\

** *\ 1 0. (35)

Let us verify this statement.  Let  ω* = α α1, ,…{ }k j
  and  ω** = α α1 1

, ,…{ }+k j
,  ω*, ω** ∈  Ωj  ,  i.e., the re-

strictions in (8) are severe for these subsets.  Therefore, 

y y y g g g y
k j jkα α α1 2 1 2 0+ + = + +…+( ) ,

y y y y y
kj kj k j

α α α α α1 2 1 1
+ +…+ + +…+

+ +
  =  ( )g g g g g yk k kj j j1 2 1 01

+ +…+ + +…++ +
.

Subtracting the first equality from the second one and taking into account (25) and (1), we obtain equality (35),
which was to be proved. 

If  ω  ∈ Ω  and  ω  < k 1,  then we have  ω ∈ Ω  for  ω ⊂ ω .  In  Ω,  we consider the chain of sets  ω 1  ⊂  … ⊂
ω λ = Jk .  It follows from the reasoning presented above that if  y ∈ K Gkn

0 ( )  turns the inequalities in (8) into the

equalities for  ω 1 ⊂  … ⊂ ω λ = Jk ,  then, for any  ω ∈  Ω,  the corresponding inequalities in (8) turn into the equal-

ities at the point  y.  In other words, the system of severe restrictions for  F  defined by the subsets  ω  1 
, … , ω λ  is

complete.  On the other hand, the matrix of these restrictions has a triangular form and, therefore, they are linearly

independent.  Hence, taking into account that  dim  F = m,  we get  λ = (k + 1) – m.  Consequently, assertion I of
Lemma 1 is proved. 

II.  Let us prove that the set  F  is a face of  K Gkn
0 ( ).  As in the proof of assertion I, we denote by  Ω  the collec-

tion of  ω ⊆ Jk  that define severe restrictions for  F  in (8).  We prove that  ω ∈ Ω  if and only if either  ω  coincides

with one of the sets  ω 1 ⊂  … ⊂ ω λ  or there exist  j ∈ Jk  and  σ ∈ Jλ  such that  ωσ − 1 ⊆ ω ⊆ ωσ   and relation (23)

is true, namely,  k j – 1 ≤ ωσ − 1  ≤ ωσ  ≤ k j .  Without loss of generality, we can assume that  ωσ  = 1, ,…{ }ωσ

for  σ ∈ Jλ .  Consider the point  y = ( , , , )y y yk0 1 … ,  where 
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It is easy to choose small  ε i > 0  so that  y ∈ F.  It is obvious that, for  ω ⊂ Jk   for which (36) is not true, the corre-

sponding inequalities hold for  y  as strict ones, i.e.,  ω ∉ Ω.  The sufficiency of condition (36) for the inclusion

ω ∈ Ω  is obvious.  The maximum number of linearly independent severe restrictions for  F  can be calculated by
using formula (13).  Lemma 1 is proved. 

Corollary 1.  The vertex of the cone  K Gkn
0 ( )  is determined by the system of  k + 1  equations  k   of which

are obtained from (8), (9) by the replacement of the inequalities in (8) by the equalities for sets  ω 1 ⊂  … ⊂ ω  k =

Jk ,  and the  (k + 1) th equation is obtained by the replacement of one inequality in (8) by the equality for an arbi-

trary set  ω i ⊂ Jk ,  where  i ∈ Jk .

Theorem 1.

I. If  F  is an  m-face of  Q Gkn( )   defined by system (8) – (10), then there exist sets  ω  1 ⊂  ω 2 ⊂  … ⊂
ω k – m = Jk ,  m ∈ Jk − 1

0 ,  for which the inequalities in (8) turn into the equalities for  y ∈  F  ( F  is the set
of solutions of the system obtained from (8) – (10) by the replacement of the inequalities in (8) by the

equalities for  ω = ω σ  with  σ ∈ Jk – m – 1 ). 

II. If, for sets  ω 1 ⊂  ω 2 ⊂  … ⊂ ω λ = Jk ,  the inequalities in (8) are replaced by the equalities, then the set

F  of solutions of the system obtained from (8) – (10) is an  m -face of  Q Gkn( ),  whose dimension is de-
termined by the formula 

m  =  dim F  =  k  –  λ ω ωσ σ+ − −( ){ }−∑ 1 1 , (37)

where the summation is carried out over  σ  ∈  Jλ  for each of which there exists  j  ∈  Jn  such that

k j – 1 ≤ ωσ − 1   and  ωσ  ≤ k j  (we assume that  ω0  = 0 ). 

Proof.  The proof of Theorem 1 follows from Lemma 1.  For the description of a face of the base of the pyra-

mid, we choose the same sets  ω i ⊆ Jk ,  i ∈ Jk ,  as for the description of the face of the cone and add (10); dimen-
sion (37) of a face obtained under the indicated choice of severe restrictions is smaller than the dimension of a face
of the cone by 1 because we add an equality to the system of restrictions and, as is known [1], the dimension of a
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polyhedron in  R  
k  is equal to  k – r,  where  r  is the rank of the matrix of severe restrictions for a polyhedron.  The-

orem 1 is proved. 

Assume that  G  is the set of numbers  g 1 > … > g  k ≥ 0,  i.e.,  k = n.  Then we denote the polyhedron  Q Gkn( )

by  Q Gk
+( ). 

Corollary 2.  The set of solutions of system (8) – (10) is an   i-face of  Q Gk
+( )  if and only if each of these solu-

tions turns the inequalities in (8) into the equalities for sets  ω 1 , … , ω k – i – 1 ,  i ∈ Jk –1
0 ,  such that 

ω 1 ⊂ ω 2 ⊂ …  ⊂ ω k – i – 1 ⊂ J k . (38)

Let  Vk  denote the set of vertices of the base of the pyramid  Q Gkn( ) ;  it is clear that  Vk ⊂ +Rk 1. 

Corollary 3.  If  y = y y yk0 1, , ,…( ) ∈ Vk ,  then the following conditions are satisfied: 

α1
1{ }   ⊂  α α1

2
2
2,{ }  ⊂ … ⊂  α α1

1
1
1k

k
k–

–
–, ,…{ }  ⊂  α α1

k
k
k, ,…{ }  =  J k , (39)

t

i

y
t
i

=
∑

1
α   =  

t

i

tg y
=
∑

1
0       ∀ i ∈ Jk , (40)

t

k

t td y
=
∑

1
  =  1. (41)

Conversely, if conditions (39) – (41) are satisfied, then  y ∈ Vk . 

Proposition 1.  The mapping  α  defined by formulas (7) determines a one-to-one correspondence between

the points  x = x x x E G Rk kn
k

1 2, , , ( )…( ) ∈ ⊂   and  y = y y yk0 1, , ,…( ) ∈ Vk . 

Proof.  Assume that relations (1) hold for  G.  The points 

x *  =  g g g g g g g gt k1 2 1 1, , , , , , , , , , ,… … … …{ }+ +α α β β ,

x **  =  g g g g g g g gt k1 2 1 1, , , , , , , , , , ,… … … …{ }+ +β α α β

are the vertices of  Πkn G( )   obtained one from another by the permutation of the components equal to  e i  and  e j  or

the coordinates  g α  and  g β.  Then, according to the criterion of a vertex of  Πkn G( )   given in [5], which is formu-
lated at the beginning of the present paper, we have 

α1
1{ }   ⊂  α α1

2
2
2,{ }  ⊂ … ⊂  α αα

α
α

1 , ,…{ }  ⊂ … ⊂  α α αβ
α
β

β
β

1 , , , ,… …{ }

… ⊂ α α α αα β1
k k k

k
k, , , , , ,… … …{ }  =  J k ,

t

i

x
t
i

=
∑

1
α   =  

t

i

tg
=
∑

1
      ∀ i ∈ Jk .
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Hence, for the point  x *,  the inclusions take the form 

{ 1 }  ⊂ … ⊂  { 1, 2, … , α }  ⊂  { 1, 2, … , α, α + 1 }

… ⊂ { 1, 2, … , α, α + 1, … , β }  ⊂  { 1, … , α, α + 1, … , β + 1 }

… ⊂  { 1, 2, … , α, α + 1, … , β – 1, β, β + 1, … , k }  =  Jk 

and the system is as follows: 

x 1  =  g 1 ,

……………………

x x x1 2 1+ + … + α–   +  x α  =  g g g g1 2 1+ + … + +α α– ,

………………………

x x x x x x1 1 1 1+ … + + + + … + ++ +α α α β β–   =  g g g g g1 1 1+ … + + + … + + +α α β β– ,

………………………

x x x x x xk1 1 1+ … + + + … + + + … ++ +α α β β   =  g g g g gk1 1+ … + + … + + + … ++α β β .

For the point  x **,  the conditions 

{ 1 }  ⊂ … ⊂  { 1, 2, … , β }  ⊂  { 1, 2, … , β, α + 1 }

… ⊂ { 1, … , β, α + 1, … , β – 1, α  }  ⊂  { 1, … , β, α + 1, … , α, β + 1 }

… ⊂  { 1, 2, … , β, α + 1, … , β – 1, α, β + 1, … , k }  =  Jk 

are satisfied and the system has the form 

x 1  =  g 1 ,

…………………

x x x x1 2 1+ + … + +α β–   =  g g g g1 2 1+ + … + +α α– ,

………………………

x x x x x x1 1 1 1+ … + + + + … + ++ +α β α α β–   =  g g g g g1 1 1+ … + + + … + + +α α β β– ,

………………………

x x x x x xk1 1 1+ … + + + … + + + … ++ +β α α β   =  g g g g gk1 1+ … + + … + + + … ++α β β .
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We now prove that the mapping  α  defined by condition (7) transforms the points  x *  and  x  **,  which are

vertices of  Πkn G( ) ,  into points from  Vk.  Under the mapping  α,  the point  x *  turns into the point  y *  with the co-
ordinates 

y 0  =  d g d g d g d g d g d g d gk k1 1 1 1 1 1 1 1
1

+ … + + + … + + + + … +{ }+ + + +α α α α β β β β β β– –
–

,

y 1  =  g 1 y 0 ,      y 2  =  g 2 y 0 , … , y α – 1  =  g α – 1 y 0 ,      y α  =  g α y 0 ,

y α + 1  =  g α + 1 y 0 , … , y β – 1  =  g β – 1 y 0 ,      y β  =  g β y 0 ,

y β + 1  =  g β + 1 y 0 , … , y k – 1  =  g k – 1 y 0 ,      y k  =  g k y 0 ,

and the point  x **  turns into the point  y **  with the coordinates 

y0  =  d g d g d g d g d g d g d gk k1 1 1 1 1 1 1 1
1

+ … + + + … + + + + … +{ }+ + + +α β α α β β β α β β– –
–

,

y1  =  g 1 y 0 ,      y2  =  g 2 y 0 , … , yα–1  =  g α – 1 y 0 ,      yα   =  g β y 0 ,

yα+1  =  g α + 1 y 0 , … , yβ–1  =  g β – 1 y 0 ,      yβ   =  g α y 0 ,

yβ+1  =  g β + 1 y 0 , … , yk –1  =  g k – 1 y 0 ,      yk   =  g k y 0.

Comparing the coordinates of these points, we get  y * ≠ y **  because  yα  ≠ y α  and  yβ  ≠ y β.  We now prove that

y *, y ** ∈ Vk .  According to Corollary 3, if conditions (39) – (41) are satisfied for  y ∈ Rk+1,  then  y  ∈ Vk.  Let us

verify this statement for  y *  and  y **.  Condition (41) is satisfied for these points by virtue of (7).  For  y *,  on the
basis of the indices of coordinates, we construct the following chain: 

{ 1 }  ⊂  { 1, 2 }  ⊂ … ⊂  { 1, 2, … , α – 1, α  }

⊂ { 1, 2, … , α – 1, α, α + 1 }  ⊂ … ⊂  { 1, 2, … , α, α + 1, … , β – 1, β  }

⊂  { 1, 2, … , α, α + 1, … , β – 1, β, β + 1 } …

⊂  { 1, 2, … , α, α + 1, … , β – 1, β, β + 1, … , k }  =  Jk .

Then we obtain the following system of severe restrictions for this point: 

y 1  =  g 1 y 0 ,

………………………

y y y y1 2 1+ + … + +α α–   =  g g g g y1 2 1 0+ + … + +( )α α– ,

………………………
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y y y y y1 1 1+ … + + + … + + +α α β β–   =  g g g g g g y1 1 1 1 0+ … + + + + … + +( )+ +α α α β β– ,

………………………

y y y y yk1 1+ … + + … + + + … ++α β β   =  g g g g g yk1 1 0+ … + + … + + + … +( )+α β β .

Hence, conditions (39) and (40) are satisfied.  Analogous results hold for the point  y **.  Therefore,  y *, y ** ∈ Vk  are

the images of the points  x *, x ** ∈ vert ( )Πkn G . 
The first part of Proposition 1 is proved.  To prove its second part, it suffices to choose an arbitrary point

y  ∈ Vk  and show by analogy that a point  x ∈ vert ( )Πkn G   is its preimage.  Proposition 1 is proved. 

It follows from Proposition 1 and the equality  α E Gkn( )( )  = E Rk⊂ +1  that  E  ⊂ Vk  and  Vk ⊂ E,  i.e.,  Vk = E
and, therefore,  vert ( )Q Gkn  = E. 

As is known [1, p. 53], adjacent vertices of a polyhedron are two vertices that lie on the same edge.  Taking into
account different forms of definition of polyhedron, one can obtain different criteria for the adjacency of its vertices.

If a polyhedron  M  is defined in the space  Rk   in its canonical form, then an edge of this polyhedron is defined by
(k – 1)  linearly independent severe restrictions.  Hence, according to [1. p. 53], the definition of adjacency of
vertices of a polyhedron can be formulated as follows: two vertices of a polyhedron given in its canonical form are
adjacent if the systems of their linearly independent severe restrictions differ only by one equation. 

Consider the following criterion of adjacency of vertices in  Q Gkn( ) : 

Theorem 2.  The vertices of  Q Gkn( )  adjacent to the vertex 

g   =  1

1 1 1 1

1 2

t

k
t t

k
t t

k
t t

k
tg d

g

g d

g

g d

g

g d
t t t

k

t= = = =∑ ∑ ∑ ∑
…











α

α

α

α

α

α

α
; ; ; ;  ,

where  α j ∈ Jk   and  j ∈ Jk ,  are the vertices obtained from  g   by the permutation of the components equal to  e  i

and  e i + 1 
,  i ∈ Jn – 1 ;  moreover, only these vertices are adjacent to  g . 

Proof.  Since the pyramid is located in the space  Rk+1,  according to Theorem 1 and Corollary 3 every vertex
of the base of this pyramid is described by a system of linearly independent severe restrictions, which consists of
k + 1  equations of the system given by conditions (39) – (41).  Since adjacent vertices lie on the same edge of the
polyhedron, the system of linearly independent severe restrictions that describes this edge consists of  k  common
equations contained in the system of restrictions that describe adjacent vertices.  Every  ( k – 1) th equation from the
system of severe restrictions that determine the adjacent vertices differs by its left-hand side [1].  This fact is ex-

plained by the permutation of the components  e i  and  e  i + 1 ,  i ∈  Jn – 1,  that determine the coordinates of the
point  g . 

Hence, to determine the vertices of  Q Gkn( )   that are adjacent to  g ,  it is necessary to perform the permutation

of the components equal to  e i  and  e i + 1 ,  i ∈ Jn – 1 ,  which was to be proved. 

Corollary 4.  Each vertex of the polyhedron  Q Gkn( )  is adjacent to the vertex of the pyramid located at the

point  O(0, … , 0). 

Theorem 3.  The number  r   of vertices adjacent to an arbitrary vertex of  Q Gkn( )  is equal to  r  =
η η η η η η η η1 2 2 3 3 4 1 1+ + + … + +n n– . 
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Proof.  According to Theorem 2, to obtain a vertex adjacent to the vertex 

g   =  1

1 1 1 1

1 2

t

k
t t

k
t t

k
t t

k
tg d

g

g d

g

g d

g

g d
t t t

k

t= = = =∑ ∑ ∑ ∑
…











α

α

α

α

α

α

α
; ; ; ;  ,

where  α j ∈ Jk  and  j ∈ Jk ,  it is necessary to perform the permutation of  e i   and  e  i + 1 ,  i ∈  Jn – 1 .  The number of

elements  e i  is equal to  η i ,  i ∈ Jn .  The number of vertices adjacent to  g   that are obtained by the permutation of

e i  and  e i + 1  is equal to  η i η i + 1,  i ∈ Jn – 1 ,  and the number of all adjacent vertices is equal to  r = η η1 2 + η η2 3 +

η η3 4 + … + η ηn n–1 .  Each vertex of  Q Gkn( )  is adjacent to a vertex of the pyramid and, therefore,  r = η η1 2  +
η η2 3  + η η3 4  + … + η ηn n–1 1+ ,  which was to be proved. 

As is known [5, p. 29], two  i-faces  Si
1  and  Si

2   of a  ( k – 1 )-polyhedron  M  are called adjacent if they intersect

along a  ( k – 1 )-face  Si–1  of this polyhedron, i.e., 

  S Si i
1 2I   =  Si–1,      i ∈ Jk – 2. (42)

According to Corollary 2, for an arbitrary  i-face of  Q Gk
+( )  there exist sets  ω 1 , … , ω k – i – 1 ,  i ∈  Jk –1

0 .  Denote the

collection of these sets for  Si
1  and  Si

2   by  Ω1
i   and  Ω2

i
 ,  respectively.  Let us formulate a criterion for the adja-

cency of faces of  Q Gk
+( ). 

Theorem 4.  In order that two  i-faces  Si
1  and  Si

2   of the polyhedron  Q Gk
+( )  be adjacent, it is necessary

and sufficient that the set 

Ωi–1  =  Ω Ω1 2
i iU (43)

define an  ( i – 1 ) -face  Si–1,  i ∈ Jk – 2 . 

Proof.  Necessity.  Assume that  i-faces  Si
1  and  Si

2   of the polyhedron  Q Gk
+( )  are adjacent.  According to

Corollary 2, there exist sets  Ω1
i  = { } =

− −ω j j
k i1

1
1  for  Si

1  and  Ω2
i  = { } =

− −ω j j
k i2

1
1  for  Si

2   that satisfy (38).  Assume that

condition (42) is satisfied.  Then, according to Corollary 2, there exists a set  Ωi–1 = { } =
−ω j j

k i
1  that corresponds to

the face  Si–1  and satisfies (38).  Since the restrictions describing the faces  Si
1  and  Si

2   must simultaneously hold

at the points of the face  Si–1,  we conclude that condition (43) is satisfied. 

Sufficiency.  Assume that condition (43) is satisfied.  Then it follows from Corollary 2 that there exist faces  Si
1

and  Si
2   that are defined by the sets  Ω1

i   and  Ω2
i   and, by virtue of (43), we get (42).  Thus, the criterion for the ad-

jacency of the faces of the polyhedron  Q Gk
+( )  is proved. 

Note that the properties of the admissible domain for problem (5), (6) described in the present paper [in particu-
lar, the sets  E  of admissible solutions of problem (11), (12)] enable one to apply the method of combinatorial trun-
cation presented in [11, 12] to the solution of the problems indicated. 

In our opinion, the other properties of problem (5), (6) established in this paper can be used for the construction
of methods and algorithms for the solution of problems with linear-fractional objective function and certain addi-
tional (in particular, nonlinear) conditions. 
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