Г.А. Донец, Л.Н. Колечкина

Об одном подходе к решению комбинаторной задачи оптимизации на графах

Рассмотрены задачи комбинаторной оптимизации на множестве перестановок с повторениями. На основании специфических свойств и структуры множества перестановок, а также теории графов описывается построение последовательности значений линейной целевой функции, разложение точек множества перестановок по гиперплоскостям и их зависимость с учетом повторения элементов.

The problems of the combinatorial optimization on a set of transpositions with repetitions, are considered. On the basis of specific characteristics and structures of a set of transpositions as well as the graph theory, the building of a sequence of values of a linear target function, the decomposition of points of a set of transpositions on hyperplanes and their dependence with account of elements repetitions are described.

Розглянуто задачі комбінаторної оптимізації на множині перестановок з повтореннями. На підставі специфічних властивостей та структури множини перестановок, а також теорії графів описано побудову послідовності значень лінійної цільової функції, розклад точок множини перестановок на гіперплощинах та їх залежність з урахуванням повторення елементів.

Введение. Комбинаторные оптимизационные задачи сложны с вычислительной точки зрения. Методы решения этих задач развиваются в двух основных направлениях: точные и приближенные. Такое разделение весьма условно в силу того, что каждый конкретный класс задач (даже отдельная задача) предъявляют свои требования к методу решения.

В последние годы началось изучение свойств отдельных классов дискретных оптимизационных задач и использование этих свойств при построении алгоритмов решения. Ряд обзорных публикаций охватывают определенные классы задач и методы их решения. В частности, разработан ряд методов итерационного типа, достаточно универсальных и позволяющих вместе с тем учитывать конкретную специфику задачи. В этом смысле представляют интерес задачи комбинаторного типа, описанные в работах [1–8].

Задачи на комбинаторных множествах интересны тем, что область допустимых решений представляет собой некоторый комбинаторный многогранник, свойства которого изучены и исследованы, что дает возможность использовать их специфические свойства для построения новых и для совершенствования существующих методов решения комбинаторных оптимизационных задач.

Широкий круг задач по своей математической постановке сводится к соответствующим классам задач комбинаторной оптимизации, в частности, в ряде задач оптимизируемый функционал задается на комбинаторном множестве. Примерами комбинаторных множеств является множество перестановок, перестановок с повторениями, разбиений и др. В работах [4–6, 9] показано, что элементы множества перестановок можно интерпретировать как вершины некоторого выпуклого многогранника. Отметим, что особенности комбинаторных свойств многогранников тесно связаны с задачами оптимизации, важными для практических применений. Многогранники тесно связаны с изучением свойств графов. Графы многогранников обладают многими интересными свойствами. При их изучении и применении решается большое число задач, представляющих интерес в экономике, транспорте, оптимальном календарном и многоэтапном планировании.

Графы можно использовать, когда исследуемая задача моделируется с помощью графа, вершины которого представляют вершины многогранника.

Использование свойств графов комбинаторных многогранников могут послужить повышению эффективности «традиционных» и разработке новых методов комбинаторной оптимизации.

Комбинаторные модели могут быть применены для представления оптимизационных за-

^{*} Ключевые слова: комбинаторные множества, множество перестановок с повторениями, перестановочный многогранник, графы, гиперграни, гамильтонов путь.

дач, возникающих при оптимальном размещении на графах. Отметим, что ряд задач формулируется в терминах точек и связей между ними, такие как составление расписания, проектирование электронных схем, анализ сетей в электротехнике и др. Поэтому эффективные алгоритмы решения задач теории графов имеют большее практическое значение.

В статье рассматривается комбинаторная задача нахождения вершины перестановочного многогранника, отвечающей значению заданной целевой функции.

Предложен новый алгоритм решения оптимизации задач на комбинаторном множестве перестановок с повторениями использования специальных свойств перестановочного многогранника и его графов, что является продолжением работ [9-12], в которых рассматриваются алгоритмы на графах.

Задача оптимизации на комбинаторном множестве перестановок с повторениями

Для дальнейшего изложения материала приведем основные понятия и определения. Рассмотрим мультимножество $A = \{a_1, a_2, ..., a_a\}$, его основание $S(A) = \{e_1, e_2, ..., e_k\}$, где $e_i \in \mathbb{R}^l$ для $\forall j \in N_k$, и кратность элементов $k(e_i) = r_i$, $j \in N_k$, $r_1 + r_2 + ... + r_k = q$ согласно [4, 5].

Упорядоченной *п*-выборкой из мультимножества A называется набор

$$a = (a_{i_1}, a_{i_2}, \dots, a_{i_n}),$$
 (1)

где $a_{i_j} \in A \ \forall i_j \in N_n, \ \forall j \in N_n, \ i_s \neq i_t,$ если $s \neq t$ $\forall s \in N_n, \ \forall t \in N_n$.

Определение 1. [4–6] Множество E(A), элементами которого являются п-выборки вида (1) из мультимножества A, называется евклидово комбинаторное множество, если для произвольных его элементов $a' = (a'_1, a'_2, ..., a'_n), a'' =$ $=(a_1'',a_2'',...,a_n'')$ выполняются условия: $(a' \neq a'') \Leftrightarrow$ \Leftrightarrow ($\exists j \in N_n : a'_i \neq a''_i$), т.е. два элемента множества E(A) отличны один от другого, если они независимо от других отличий различаются порядком размещения символов, их образующих.

Множество перестановок с повторениями из n действительных чисел, среди которых k различны, называется общим множеством перестановок и обозначается $P_{nk}(A)$. Это множество упорядоченных п-выборок вида (1) из мультимножества A при условии n = q > k.

Будем рассматривать элементы множества перестановок как точки арифметического евклидова пространства R^n .

В монографиях [9, 10] показано, что выпуклой оболочкой множества перестановок является перестановочный многогранник $\Pi(A)$ = $= conv P_{nk}(A)$, множество вершин которого равно множеству $P_{nk}(A)$ перестановок: vert M(A) = $=P_{nk}(A)$.

Не теряя общности, упорядочим элементы мультимножества A по неубыванию:

$$a_1 \le a_2 \le \ldots \le a_n, \tag{2}$$

и элементы его основания - по возрастанию: $e_1 < e_2 < ... < e_k$. Тогда выпуклой оболочкой общего множества перестановок $P_{nk}(A)$ является общий перестановочный многогранник M(A) == P(A), описываемый следующей системой линейных неравенств:

$$\left\{\sum_{j=1}^{n} x_j \le \sum_{j=1}^{n} a_j,\right. \tag{3}$$

$$\begin{cases} \sum_{j=1}^{n} x_{j} \leq \sum_{j=1}^{n} a_{j}, \\ \sum_{j=1}^{i} x_{\alpha_{j}} \leq \sum_{j=1}^{i} a_{j}, \end{cases}$$
 (3)

 $\alpha_{i} \in N_{n}, \alpha_{i} \neq \alpha_{t}, \forall j \neq t, \forall j, \forall j, t \in N_{i}, \forall i \in N_{n},$ a $P_{nk}(A) = vert \Pi(A)$.

Рассмотрим задачу евклидовой комбинаторной оптимизации вида:

$$Z(\Phi(a), P_{nk}(A)) : \max \left\{ \Phi(a) \middle| a \in P_{nk}(A) \right\},\,$$

состоящей в максимизации функции $\Phi(a)$ на множестве перестановок $P_{nk}(A)$, где $\Phi(a) =$

$$=\sum_{j=1}^{n}c_{j}x_{j}.$$

При отображении множества $P_{nk}(A)$ в евклидово пространство R^n можно сформулировать задачу линейного программирования Z(F, X)максимизации критерия F(x) на множестве X,

причем каждой точке $a \in P_{nk}(A)$ будет соответствовать точка $x \in X$, такая что $F(x) = \Phi(a)$.

$$Z(F,X): \max \{F(x) \mid x \in X\}, \tag{5}$$

где $F(x) = \sum_{j=1}^{n} c_j x_j$, X – непустое множество в

 R^n , определяемое таким образом X = vetr M(A), $M = conv P_{nk}(A)$.

Следует отметить, что иногда целесообразно решить задачу вида:

$$x^* = \operatorname*{arg\,max}_{x \in M(A)} F(x), \qquad \qquad (6)$$

для значения функции $y^* = F(x^*)$. Имеет смысл рассматривать задачу, где значение целевой функции находится в интервале

$$F(\bar{x}) \le F(x) \le F(\bar{x})$$
.

Тогда задача (6) примет вид:

$$\bar{x} = \underset{x \in M(A)}{\operatorname{arg max}} F(x) \text{ при } \bar{y} = F(\bar{x}),$$

$$\overline{\overline{x}} = \underset{x \in M(A)}{\operatorname{arg max}} F(x)$$
 при $\overline{\overline{y}} = F(\overline{\overline{x}})$

при условии $|\overline{x} - \overline{\overline{x}}| \to \min$.

Продолжая исследования и развивая результаты работ [4–6], в статье предложен подход к решению задач, основанных на упорядочивании значений целевой линейной функции F(x) и построении гамильтонова пути для точек, в которых эти значения находятся. Далее под задачей понимаем задачу (6).

Для построения метода, прежде всего, необходимо определить начальную точку. Воспользуемся следующим утверждением.

Утверждение 1. [8] Если для элементов мультимножества *А* и коэффициентов целевой функции задачи

$$extr\left\{f(x) = \sum_{j=1}^{n} c_{j} x_{j} \middle| x \in vert M(A)\right\}$$

выполняются соответственно условия (2) и

$$c_{i} \le c_{i} \le \dots \le c_{i}, \tag{7}$$

 $i_n \in N_n$, то максимум функции f(x) на допустимом множестве достигается в точке $x^* = (x_i^*, ...$

 $..., x_{i_n}^*) \in vert M(A)$, которая задается следующим образом:

$$x_{i_i}^* = a_j \forall j \in N_n,$$

а минимум соответственно в точке $y = (y_1, y_2, ... y_n)$, где

$$y_{i_{j+1}} = a_{n-j} \forall j \in N_{n-1} \cup \{0\}.$$

Отметим, что общее число q линейных неравенств, входящих в систему (3), (4), описывающую перестановочный многогранник M(A),

равно
$$\sum_{i=0}^{n} C_n^i = 2^n$$
, а это задача большей раз-

мерности и очень сложна при решении традиционными методами линейного программирования. Поэтому назрела необходимость в разработке новых методов, базирующихся на свойствах множества допустимых решений и целевых функций.

Для рассматриваемой задачи (6) область допустимых решений определяется перестановочным многогранником, вершины которого точки общего множества перестановок. Сформулируем некоторые полезные свойства перестановочного многогранника.

Теорема 1. [4] Точки множества $P_{nk}(A)$ лежат на семействе n-плоскостей вида

$$\frac{s}{n-s}x_1 + \frac{s}{n-s}x_2 + \dots + \frac{s}{n-s}x_{n-s} - x_{n-s+1} - \dots - x_n + a_t^s = 0,$$

$$t = 1, 2, \dots, \gamma_s \le \frac{n}{s!(n-s)!},$$

при этом s может принимать значения 1, 2, ... n-1.

Теорема 2. [4] Вершины M(A), смежные с вершиной $a=(a_{i_1},a_{i_2},...,a_{i_n})$, имеют вид $\beta=(a_{j_1},a_{j_2},...a_{j_n})$, где каждая из последовательностей $(j_1,j_2,...,j_n)$ получена из $(i_1,i_2,...,i_n)$ в результате перестановки таких индексов i_r и i_t , что $|i_r-i_t|=1,a_i\neq a_i$.

Обе теоремы дают возможность рассматривать многогранник перестановок как некий граф, поскольку задача формулируется в тер-

минах точек и связей между ними, т.е. в терминах графов. Большинство задач на графах касается определения компонент связности, поиска маршрутов, расстояния.

Подход к решению задачи комбинаторной оптимизации

Существует множество задач, постановка которых укладывается в рамки задач комбинаторной оптимизации, в частности задач на множестве перестановок с повторениями.

Решение таких задач — сложный процесс. В данной статье рассматривается задача, в которой необходимо определить точку экстремума — вершину перестановочного многогранника M(A) по известному значению целевой функции. Для этого вначале необходимо найти значения целевой функции в каждой точке, построить для этих значений цепочку (граф), отображающую переходы от точки к точке, где точки соединяются дугами, и выяснить зависимость между ними.

На основании утверждения 1 можно определить точку максимума и минимума. Обозначим вершину x_0 , определяющую точку минимума, началом сети, из которой дуги только выходят. Тогда вершина, определяющая точку максимума x_n , — конец сети, в которую дуги входят.

Воспользуемся теорией графов и рассмотрим произвольную вершину многогранника. Произвольная вершина перестановочного многогранника x и ребро u графа Γ являются инцидентными, так как вершина x — один из концов ребра u, т.е. входит в пару вершин, определяющих ребро u. Как известно, степенью вершины называют число инцидентных ей ребер. Вершины первой степени называются концевыми. Вершины нулевой степени очевидно не связаны ребрами с другими вершинами, и их называют изолированными.

Учитывая, что каждое ребро перестановочного многогранника инцидентно двум вершинам графа, легко заметить, что сумма степеней всех вершин графа равна удвоенному числу его ребер. Пусть $\Gamma = \langle X, C \rangle$ — некоторый граф, $X = \{1, 2, ..., n\}$. Бинарная матрица $\|a_{ij}\|$ такая,

что
$$a_{ij} = \begin{cases} 1, & \text{если вершины смежные,} \\ 0, & \text{если вершины несмежные} \end{cases}$$

определяет матрицу смежности графа перестановочного многогранника. Смежность вершин многогранника перестановок определяется согласно теоремы 2.

Отметим, что граф многогранника перестановок — гамильтонов, т.е. должен содержать простой цикл, проходящий через каждую его вершину. Гамильтоновой цепью называют простую цепь, содержащую все вершины графа.

Знаменитая задача о коммивояжере — комбинаторная задача на множестве перестановок и связана с нахождением гамильтонова цикла кратчайшей суммарной длины. В этой задаче считается, что имеется *п* городов, которые непременно должен посетить коммивояжер, — все и по одному разу, проделав общий путь наименьшей суммарной протяженности. Если между городами есть дороги, то они интерпретируются как ребра графа порядка *п* с указанием длины. Вершины такого графа — вершины перестановочного многогранника.

Задача коммивояжера — пример комбинаторной задачи на графах, имеющий большое практическое и теоретическое значение. В силу своей вычислительной сложности она равносильна целому классу переборных задач и часто используется математиками для сравнительного анализа и изучения сложности алгоритмов оптимизации в дискретной математике.

Легко убедится, что в полном графе порядка n существует ровно (n-1)! гамильтоновых циклов. Действительно, зафиксировав любую из n вершин полного графа, из нее (n-1) способами можно перейти в другую — следующую, получая простую цепь из двух вершин. Далее выбрать следующую вершину можно (n-2) способами и так далее, получая (n-1) (n-2) ... 2*1 = (n-1)! гамильтоновых циклов.

Поскольку
$$n! \approx a\sqrt{n}n^n e^{-n} = a\sqrt{n}\left(\frac{n}{e}\right)$$
 при

 $n \to \infty$, можно предположить, что поиск гамильтоновых циклов связан с огромным перебором вариантов. Но в данной статье предлагается другой подход к решению таких задач,

без перебора вариантов, что делает алгоритм более эффективным и удобным.

Рассмотрим пример перестановки с повторениями из множества $A = \{1, 2, 2, 4\}$.

Последовательности перестановок можно интерпретировать как граф G_n , вершины которого соответствуют всем точкам множества перестановок $P_{nk}(A)$.

В графе две вершины, соответствующие перестановкам f и g, соединены ребром тогда, когда g образуется из f однократной транспозицией соседних элементов (таким образом, каждая вершина имеет степень n-1). Согласно теореме 2, эти вершины являются смежными.

Заметим, что последовательность перестановок, образованная графом, соответствует гамильтонову пути в G_n , т.е. пути, содержащему каждую вершину графа в точности один раз. Теорема 1 указывает на возможность разбиения множества $P_{nk}(A)$ на подмножества, лежащие во взаимно параллельных плоскостях, так же согласно [4] исходное множество $P_{nk}(A)$ можно разложить на множества меньшей размерности, объединение которых порождает множество $P_{nk}(A)$:

$$P_{nk}(A) = \bigcup_{t=1}^{k} P_{nk}^{t}(A).$$

В некоторых ситуациях важно, чтобы каждое последующее полученное подмножество наименьшим образом отличалось от предыдущего.

Последовательность таких подмножеств можно проиллюстрировать на графе, вершины которого соответствуют бинарным последовательностям длины *п* и две вершины которого соединены ребром, если соответствующие последовательности отличаются только в одной позиции. В таком графе построенная последовательность соответствует гамильтонову пути. Рассмотрим примеры.

Пример 1. Пусть дано множество $A = \{1, 2, 2, 4\}$, с помощью которого образуется множество перестановок с повторениями $P_{nk}(A)$. Определена функция

$$F(x) = c_1 x_1 + c_2 x_2 + c_3 x_3 + c_4 x_4, \tag{8}$$

коэффициенты которой упорядочены следующим образом $c_1 \le c_2 \le c_3 \le c_4$ и принимают значения $\{1, 2, 3, 4\}$, а $y^* = F(x^*)$ значение функции в некоторой точке.

Необходимо найти $x^* = \arg extr F(x)$, где $x^* \in P(A)$.

Решение: Как известно $M(A) = convP_{nk}(A)$. Представим разложение графа перестановочного многогранника M(A) по подграфам. Согласно утверждению 1 и условию упорядочения коэффициентов, в начальной вершине графа находится точка, в которой достигается максимальное значение целевой функции.

На рис. 1 рассматривается подграф A, который задается уравнением $x_4 = 4$, а остальные три цифры переставляются между собой. Стрелки указывают переход от точки к точке по убыванию значений целевых функций.

Рис. 1

Соответственно можно построить подграф B, на котором будут представлены точки при условии $x_4=2$. Заметим, что такой подграф будет содержать по шесть точек. Назовем эти гиперплоскости 3-грани. Грани лежат на гиперграни вида $x_1+x_2+x_3+x_4=1+2+2+4$. Обозначим ее символом A. Тогда $A=A \cup B \cup C$, а на рис. 2 гиперплоскость A имеет вид.

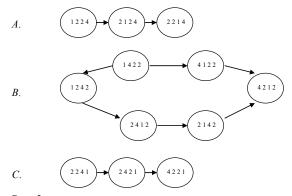


Рис. 2

Таким образом, количество повторений в множестве перестановок $P_{nk}(A)$ приводит к «склеиванию» гиперплоскостей в точках этих повторений.

Определим значения целевой функции в каждой вершине многогранника.

$$F(A_1) = 1*1+2*2+3*2+4*4=1+4+6+16=27$$

 $F(A_2) = 1*2+2*1+3*2+4*4=2+2+6+16=26$
 $F(A_3) = 1*2+2*2+3*1+4*4=2+4+3+16=25$
 $F(A_4) = 1*1+2*2+3*4+4*2=1+4+12+8=25$
 $F(A_5) = 1*1+2*4+3*2+4*2=1+8+6+8=23$
 $F(A_6) = 1*4+2*1+3*2+4*2=4+2+6+8=20$
 $F(A_7) = 1*4+2*2+3*1+4*2=4+4+3+8=19$
 $F(A_8) = 1*2+2*1+3*4+4*2=2+2+12+8=24$
 $F(A_9) = 1*2+2*4+3*1+4*2=2+8+3+8=21$
 $F(A_{10}) = 1*2+2*4+3*1+4*2=2+4+12+4=22$
 $F(A_{11}) = 1*2+2*4+3*2+4*1=2+8+6+4=20$
 $F(A_{12}) = 1*4+2*2+3*2+4*1=4+4+6+4=18$

С учетом сказанного и рис. 1, 2 сформулируем следующую лемму.

 $\mathcal{L}_{nk}(A)$ можно разложить по параллельным гиперплоскостям в порядке убывания значений линейной целевой функции F(x) в этих точках.

Справедливость леммы следует из теоремы 1 и утверждения 1 (рис. 3).

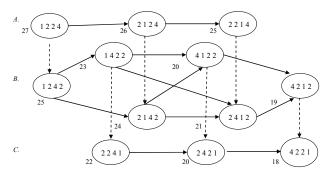


Рис. 3

На основании леммы 1 целесообразно сформулировать утверждение, обеспечивающее построение иерархии точек.

Лемма 2. Разложение точек комбинаторного множества перестановок с повторениями $P_{nk}(A)$ при $n \ge 4$ обеспечивает иерархическое расположение этих точек по гиперплоскостям A, B, C (рис. 2) согласно значениям целевой функции $y^* = F(x^*)$.

Доказательство: Согласно теореме 1 разложение по гиперплоскостям точек комбинаторного множества перестановок очевидно. А по утверждению 1 можно определить максимальное и минимальное значения функции F(x) на каждой из гиперплоскостей A, B, C, D. Стрелки указывают переход по значениям целевой функции от больших к меньшим.

Для функции (8) при условии $c_1 \le c_2 \le c_3 \le c_4$ введем следующие обозначения

$$\Delta_1 = c_2 - c_1$$
; $\Delta_2 = c_3 - c_2$; $\Delta_3 = c_4 - c_3$.

Для вышеопределенных обозначений установим возможные соотношения:

1)
$$\Delta_1 = \Delta_2 = \Delta_3$$
; 2) $\Delta_1 > \Delta_2 > \Delta_3$;

3)
$$\Delta_2 > \Delta_1 > \Delta_3$$
; 4) $\Delta_2 > \Delta_3 > \Delta_1$.

Для построения гамильтонова пути необходимо установить соотношения на каждой из гиперплоскостей A,B,C (рис. 3) между парами точек. Для этого введем в рассмотрение понятия α_i -вопросов.

Определение 2. Назовем α_i -опросами соотношения между точками множества перестановок $P_{nk}(A)$ на гиперплоскостях A,B,C, решаемых для определения гамильтонова пути отдельно на каждой гиперплоскости.

По каждому из вышеопределенных случаев составим схему, отображающую расположение точек множества перестановок $P_{nk}(A)$ по значению целевой функции на гиперплоскостях A,B,C, затем составим общее соотношение и укажем гамильтонов путь по всему перестановочному многограннику $\Pi(A)$.

Рассмотрим гиперплоскость A (рис. 1) и точки, между которыми необходимо установить связь. Поэтому вычислим соотношения:

Обозначим вопрос $\alpha_1 = \Delta_1 - \Delta_2$.

Тогда, размещение точек на гиперплоскости A по значению целевой функции соответствует рис. 1. Аналогичная ситуация и на гиперплоскости C:

Рассмотрим гиперплоскость B (рис. 2), для точек которой составим соотношение для таких пар вершин:

На гиперплоскости B возникают вопросы $\alpha_1 = \Delta_1 - 2\Delta_2$ и $\alpha_2 = -2\Delta_1 + \Delta_2$. Поэтому гамильтонов путь на B имеет вид:

При решении α_i -вопросов также следует отметить, что прослеживается зависимость между точками, которые находятся на разных гиперплоскостях.

Заметим, что на гиперплоскостях A и B имеются точки, для которых выполняется сле-

2

С учетом вышесказанного точки на гиперплоскостях A и B можно разложить в следующую цепочку, в зависимости от значений целевой функции:

$$\underbrace{\begin{pmatrix} 1 & 2 & 2 & 4 \\ 27 & 26 & 25 \end{pmatrix}}_{26} + \underbrace{\begin{pmatrix} 2 & 2 & 1 & 4 \\ 25 & 25 & 26 & 24 \end{pmatrix}}_{25} + \underbrace{\begin{pmatrix} 2 & 1 & 4 & 2 \\ 24 & 2 & 2 & 21 \end{pmatrix}}_{24} + \underbrace{\begin{pmatrix} 2 & 4 & 1 & 2 \\ 24 & 2 & 2 & 21 \end{pmatrix}}_{19} + \underbrace{\begin{pmatrix} 4 & 1 & 2 \\ 20 & 2 & 1 & 2 \end{pmatrix}}_{19} + \underbrace{\begin{pmatrix} 4 & 1 & 2 \\ 20 & 2 & 1 & 2 \end{pmatrix}}_{19} + \underbrace{\begin{pmatrix} 4 & 1 & 2 \\ 20 & 2 & 1 & 2 \end{pmatrix}}_{19} + \underbrace{\begin{pmatrix} 4 & 1 & 2 \\ 20 & 2 & 1 & 2 \end{pmatrix}}_{19} + \underbrace{\begin{pmatrix} 4 & 1 & 2 \\ 20 & 2 & 1 & 2 \end{pmatrix}}_{19} + \underbrace{\begin{pmatrix} 4 & 1 & 2 \\ 20 & 2 & 1 & 2 \end{pmatrix}}_{19} + \underbrace{\begin{pmatrix} 4 & 1 & 2 \\ 20 & 2 & 1 & 2 \end{pmatrix}}_{19} + \underbrace{\begin{pmatrix} 4 & 1 & 2 \\ 20 & 2 & 1 & 2 \end{pmatrix}}_{19} + \underbrace{\begin{pmatrix} 4 & 1 & 2 \\ 20 & 2 & 1 & 2 \end{pmatrix}}_{19} + \underbrace{\begin{pmatrix} 4 & 1 & 2 \\ 20 & 2 & 1 & 2 \end{pmatrix}}_{19} + \underbrace{\begin{pmatrix} 4 & 1 & 2 \\ 20 & 2 & 1 & 2 \end{pmatrix}}_{19} + \underbrace{\begin{pmatrix} 4 & 1 & 2 \\ 20 & 2 & 1 & 2 \end{pmatrix}}_{19} + \underbrace{\begin{pmatrix} 4 & 1 & 2 \\ 20 & 2 & 1 & 2 \end{pmatrix}}_{19} + \underbrace{\begin{pmatrix} 4 & 1 & 2 \\ 20 & 2 & 1 & 2 \end{pmatrix}}_{19} + \underbrace{\begin{pmatrix} 4 & 1 & 2 \\ 20 & 2 & 1 & 2 \end{pmatrix}}_{19} + \underbrace{\begin{pmatrix} 4 & 1 & 2 \\ 20 & 2 & 1 & 2 \end{pmatrix}}_{19} + \underbrace{\begin{pmatrix} 4 & 1 & 2 \\ 20 & 2 & 1 & 2 \end{pmatrix}}_{19} + \underbrace{\begin{pmatrix} 4 & 1 & 2 \\ 20 & 2 & 1 & 2 \end{pmatrix}}_{19} + \underbrace{\begin{pmatrix} 4 & 1 & 2 \\ 20 & 2 & 1 & 2 \end{pmatrix}}_{19} + \underbrace{\begin{pmatrix} 4 & 1 & 2 \\ 20 & 2 & 1 & 2 \end{pmatrix}}_{19} + \underbrace{\begin{pmatrix} 4 & 1 & 2 \\ 20 & 2 & 1 & 2 \end{pmatrix}}_{19} + \underbrace{\begin{pmatrix} 4 & 1 & 2 \\ 20 & 2 & 1 & 2 \end{pmatrix}}_{19} + \underbrace{\begin{pmatrix} 4 & 1 & 2 \\ 20 & 2 & 1 & 2 \end{pmatrix}}_{19} + \underbrace{\begin{pmatrix} 4 & 1 & 2 \\ 20 & 2 & 1 & 2 \end{pmatrix}}_{19} + \underbrace{\begin{pmatrix} 4 & 1 & 2 \\ 20 & 2 & 1 & 2 \end{pmatrix}}_{19} + \underbrace{\begin{pmatrix} 4 & 1 & 2 \\ 20 & 2 & 1 & 2 \end{pmatrix}}_{19} + \underbrace{\begin{pmatrix} 4 & 1 & 2 \\ 20 & 2 & 1 & 2 \end{pmatrix}}_{19} + \underbrace{\begin{pmatrix} 4 & 1 & 2 & 2 \\ 20 & 2 & 1 & 2 \end{pmatrix}}_{19} + \underbrace{\begin{pmatrix} 4 & 1 & 2 & 2 \\ 20 & 2 & 1 & 2 \end{pmatrix}}_{19} + \underbrace{\begin{pmatrix} 4 & 1 & 2 & 2 \\ 20 & 2 & 1 & 2 \end{pmatrix}}_{19} + \underbrace{\begin{pmatrix} 4 & 1 & 2 & 2 \\ 20 & 2 & 1 & 2 \end{pmatrix}}_{19} + \underbrace{\begin{pmatrix} 4 & 1 & 2 & 2 \\ 20 & 2 & 1 & 2 \end{pmatrix}}_{19} + \underbrace{\begin{pmatrix} 4 & 1 & 2 & 2 \\ 20 & 2 & 1 & 2 \end{pmatrix}}_{19} + \underbrace{\begin{pmatrix} 4 & 1 & 2 & 2 \\ 20 & 2 & 1 & 2 \end{pmatrix}}_{19} + \underbrace{\begin{pmatrix} 4 & 1 & 2 & 2 \\ 20 & 2 & 1 & 2 \end{pmatrix}}_{19} + \underbrace{\begin{pmatrix} 4 & 1 & 2 & 2 \\ 20 & 2 & 1 & 2 \end{pmatrix}}_{19} + \underbrace{\begin{pmatrix} 4 & 1 & 2 & 2 \\ 20 & 2 & 2 & 2 \end{pmatrix}}_{19} + \underbrace{\begin{pmatrix} 4 & 1 & 2 & 2 \\ 20 & 2 & 2 & 2 \end{pmatrix}}_{19} + \underbrace{\begin{pmatrix} 4 & 1 & 2 & 2 \\ 20 & 2 & 2 & 2 \end{pmatrix}}_{19} + \underbrace{\begin{pmatrix} 4 & 1 & 2 & 2 \\ 20 & 2 & 2 & 2 \end{pmatrix}}_{19} + \underbrace{\begin{pmatrix} 4 & 1 & 2 & 2 \\ 20 & 2 & 2 & 2 \end{pmatrix}}_{19} + \underbrace{\begin{pmatrix} 4 & 1 & 2 & 2 \\ 20 & 2 & 2 & 2 \end{pmatrix}}_{19} + \underbrace{\begin{pmatrix} 4 & 1 & 2 & 2 \\ 20 & 2 & 2 & 2 \end{pmatrix}}_{19} + \underbrace{\begin{pmatrix} 4 & 1 & 2 & 2 \\ 20 & 2 & 2 & 2$$

Рассмотрим точки на гиперплоскости C, в частности (2 1 4 2), (1 4 2 2), так как

В данной ситуации рассматривается вопрос $\alpha_2 = -2\Delta_1 + \Delta_2$.

Аналогично со значениями в точках $(4\ 1\ 3\ 2)$ и $(3\ 4\ 1\ 2)$, так как

Если рассматривать отношение точек из разных гиперплоскостей, то значение в точке $(1\ 2\ 4\ 2)$ из B равно значению в точке $(1\ 4\ 2\ 2)$ из B, так как

В результате расчетов получим гамильтонову цепь всего графа перестановочного многогранника и упорядочение всех значений линейной функции F(x) в порядке их убывания для точек гиперплоскостей A, B, C (рис. 4):

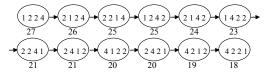


Рис. 4

Пусть дано $A_1 = (1, 1, 3, 3,) = (1^2, 2^2)$, где k = 4, n = 2, $r_1 = 2$, $r_n = r_2 = 2$. Система ограничений многогранника $\Pi(A)$ имеет вид:

$$x_1 \ge 1$$
; $x_2 \ge 1$; $x_3 \ge 1$; $x_4 \ge 1$;
 $x_1 + x_2 + x_3 \ge 5$; $x_1 + x_2 + x_4 \ge 5$; $x_1 + x_3 + x_4 \ge 5$;
 $x_2 + x_3 + x_4 \ge 5$; $x_1 + x_2 + x_3 + x_4 = 8$.

Необходимо определить значение целевой функции $f(x) = 1x_1 + 2x_2 + 3x_2 + 4x_4$ в вершине многогранника $\Pi(A)$.

Вершины многогранника размещены на гипергранях. Количество гиперграней этого многогранника $\gamma(\Gamma_{k-2}) = 2k = 8$. Количество гиперграней, проходящих через одну и ту же произвольную его вершину, равно $\gamma(\Gamma(v)) = r_1 + r_2 = 4$. Многогранник изображен на рис. 5.

Определим значение целевой функции в каждой вершине многогранника и построим гамильтонов путь по этим значениям.

$$f(A_1) = 1 * 3 + 2 * 3 + 3 * 1 + 4 * 1 = 16$$

$$f(A_2) = 1 * 3 + 2 * 1 + 3 * 1 + 4 * 3 = 20$$

$$f(A_3) = 1 * 3 + 2 * 1 + 3 * 3 + 4 * 1 = 18$$

$$f(A_4) = 1 * 1 + 2 * 3 + 3 * 3 + 4 * 1 = 20$$

40

$$f(A_5) = 1*1 + 2*3 + 3*1 + 4*3 = 20$$

$$f(A_6) = 1*1 + 2*1 + 3*3 + 4*3 = 24$$

$$A_1(3,3,1,1)$$

$$A_3(3,1,3,1)$$

$$A_4(1,3,3,1)$$

$$A_5(1,3,1,3)$$

Рис. 5

Пример 2. Пусть дано A_2 ={1, 1, 2, 4,} = {1², 2¹ 4¹}, где k = 4, n = 3, r_1 = 2, r_2 = r_3 = 1. Система ограничений многогранника $\Pi(A)$ имеет вид

$$x_1 \ge 1$$
; $x_2 \ge 1$; $x_3 \ge 1$; $x_4 \ge 1$;
 $x_1 + x_2 + x_3 \ge 4$; $x_1 + x_2 + x_3 + x_4 \ge 4$;
 $x_1 + x_2 + x_4 \ge 4$; $x_1 + x_2 + x_3 + x_4 = 8$;
 $x_1 + x_3 + x_4 \ge 4$.

Найти значение целевой функции $f(x) = 1x_1 + 2x_2 + 3x_2 + 4x_4$ в вершине многогранника $\Pi(A)$.

Вершины многогранника размещены на гипергранях. Количество гиперграней этого многогранника определено как $\gamma(\Gamma_{k-2}) = C_4^1 + C_4^8 = 8$. Количество гиперграней, проходящих через одну и ту же произвольную его вершину $\gamma(\Gamma_{\nu)}) = C_2^1 + C_1^1 = 2 + 1 = 3$. Многогранник $\Pi(A)$ изображен на рис. 6.

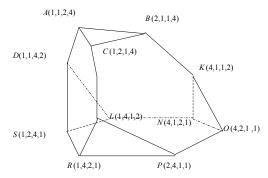


Рис. 6

На многораннике задано линейную целевую функцию вида

$$f(x) = 1x_1 + 2x_2 + 3x_3 + 4x_4.$$

Определим значение целевой функции в каждой вершине многогранника

a) на гиперграни $x_4 = 4$:

$$f(1;1;2;4) = 1*1 + 2*1 + 3*2 + 4*4 = 25$$

$$f(2;1;1;4) = 1*2 + 2*1 + 3*1 + 4*4 = 23$$

 $f(1;2;1;4) = 1*1 + 2*2 + 3*1 + 4*4 = 24$

 δ) на гиперграни $x_4=2$:

$$f(1;1;4;2) = 1*1 + 2*1 + 3*4 + 4*2 = 23$$

$$f(1;4;1;2) = 1*1+2*4+3*1+4*2 = 20$$

$$f(4;1;1;2) = 1*4 + 2*1 + 3*1 + 4*2 = 17$$

 β) на гиперграни $x_4=1$:

$$f(1;2;4;4) = 1*1+2*2+3*4+4*1=21$$

$$f(1;4;2;4) = 1*1 + 2*4 + 3*2 + 4*1 = 19$$

$$f(2;1;4;1) = 1*2 + 2*1 + 3*4 + 4*1 = 22$$

$$f(4;1;2;1) = 1*4 + 2*1 + 3*2 + 4*1 = 20$$

$$f(4;2;1;1) = 1*4 + 2*2 + 3*1 + 4*1 = 16$$

$$f(2;4;1;1) = 1*2 + 2*4 + 3*1 + 4*1 = 17$$

Пример 3. Пусть $A = \{1, 2, 2, 2,\} = \{1^1, 2^2, 3^1\}$, где k = 4, n = 3, $r_1 = 1$, $r_n = r_3 = 1$. Система ограничений многогранника $\Pi(A)$ имеет вид

$$x_1 \ge 1$$
; $x_2 \ge 1$; $x_3 \ge 1$; $x_4 \ge 1$;

$$x_1 + x_2 \ge 3$$
; $x_1 + x_3 \ge 3$; $x_1 + x_4 \ge 3$;

$$x_2 + x_3 \ge 3$$
; $x_2 + x_4 \ge 3$; $x_3 + x_4 \ge 3$;

$$x_1 + x_2 + x_3 \ge 5$$
; $x_1 + x_2 + x_4 \ge 5$;

$$x_1 + x_3 + x_4 \ge 5$$
; $x_2 + x_3 + x_4 \ge 5$;

$$x_1 + x_2 + x_3 + x_4 = 8$$
.

Вершины многогранника размещены на гипергранях. Количество гиперграней этого многогранника определено как $\gamma(\Gamma_{k-2}) = C_4^1 + C_4^2 + C_4^3 = 14$, а количество гиперграней, пересекающихся в одной вершине, $\gamma(\Gamma_{\nu}) = C_1^1 + C_2^1 + C_1^1 = 4$. Многогранник $\Pi(A)$ изображен на рисунке 7.

$$f(x) = 1x_1 + 2x_2 + 3x_3 + 4x_4$$

$$f(x_2) = 1 \cdot 2 + 2 \cdot 2 + 3 \cdot 3 + 4 \cdot 1 = 16$$

$$f(x_3) = 1 \cdot 1 + 2 \cdot 3 + 3 \cdot 2 + 4 \cdot 2 = 21$$

$$f(x_4) = 1 \cdot 2 + 2 \cdot 3 + 3 \cdot 2 + 4 \cdot 1 = 18$$

$$f(x_5) = 1 \cdot 2 + 2 \cdot 1 + 3 \cdot 3 + 4 \cdot 2 = 21$$

$$f(x_6) = 1 \cdot 1 + 2 \cdot 2 + 3 \cdot 2 + 4 \cdot 3 = 23$$

$$f(x_7) = 1 \cdot 2 + 2 \cdot 1 + 3 \cdot 2 + 4 \cdot 3 = 22$$

$$f(x_8) = 1 \cdot 3 + 2 \cdot 1 + 3 \cdot 2 + 4 \cdot 2 = 19$$

$$f(x_9) = 1 \cdot 3 + 2 \cdot 2 + 3 \cdot 2 + 4 \cdot 1 = 17$$

$$f(x_{10}) = 1 \cdot 2 + 2 \cdot 3 + 3 \cdot 1 + 4 \cdot 2 = 20$$

 $f(x_{11}) = 1 \cdot 2 + 2 \cdot 2 + 3 \cdot 1 + 4 \cdot 3 = 22$
 $f(x_{12}) = 1 \cdot 3 + 2 \cdot 2 + 3 \cdot 1 + 4 \cdot 2 = 23$

На многограннике задана линейная функция $f(x) = 1x_1 + 2x_2 + 3x_3 + 4x_4$.

Построим граф многогранника $\Pi(A)$ (рис. 7). Как известно, граф перестановочного многогранника $\Pi(A)$ — гамильтонов. Тогда толщина многогранника $\Pi(A)$ равна числу вершин многогранника $\Pi(A)$.

Теорема 3. Если $\Pi(A)$ — перестановочный многогранник, то граф многогранника $\Pi(A)$ — гамильтонов.

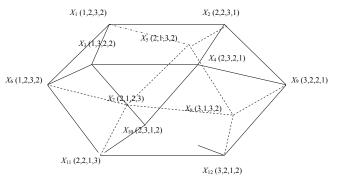


Рис. 7

Заключение. Исследованы сложные комбинаторные задачи на множестве перестановок. Рассмотрены некоторые свойства допустимой области евклидовой комбинаторной задачи, имеющей специфические входные данные. Построен и обоснован метод упорядочения значений линейной функции на множестве перестановок.

Дальнейшее развитие этой тематики, которая не нашла полного отражения в статье, будет направлено на реализацию и адаптацию сформулированного метода, а также на разработку новых методов решения комбинаторных

оптимизационных задач с учетом входных данных и других комбинаторных множеств.

- 1. *Сергиенко И.В.*, *Каспиицкая М.Ф.* Модели и методы решения на ЭВМ комбинаторных задач оптимизации. К.: Наук. думка, 1981. 287 с.
- 2. *Сергиенко И.В.* Математические модели и методы решения задач дискретной оптимизации. Там же, 1988. 472 с.
- 3. *Сергиенко И.В.*, *Лебедева Т.Т.*, *Рощин В.А*. Приближенные методы решения дискретных задач оптимизации. – Там же, 1980. – 276 с.
- 4. *Стоян Ю.Г.*, *Яковлев С.В.* Математические модели и оптимизационные методы геометрического проектирования. Там же, 1986. 265 с.
- 5. *Стоян Ю.Г.*, *Смець О.О.* Теорія і методи евклідової комбінаторної оптимізації. К.: Ін-т систем. досліджень освіти, 1993. 188 с.
- 6. *Ємець О.О.*, *Колєчкіна Л.М.* Задачі комбінаторної оптимізації з дробово-лінійними цільовими функціями. К.: Наук. думка, 2005. 118 с.
- 7. *Баранов В.И.*, *Стечкин Б.С.* Экстремальные комбинаторные задачи и их приложения. М.: ФИЗ-МАТЛИТ, 2004. 240 с.
- 8. Семенова Н.В., Колечкина Л.Н., Нагорная А.Н. Подход к решению векторных задач дискретной оптимизации на комбинаторном множестве перестановок // Кибернетика и системный анализ. 2008. № 3. С. 158—172.
- 9. *Емеличев В.А.*, *Ковалев М.М.*, *Кравцов М.К.* Многогранники, графы, оптимизация. М.: Наука, 1981. 344 с.
- 10. Донец Г.А., Шулинок И.Э. О сложности алгоритмов поиска в глубину на модульных графах // Теорія оптимальних рішень. -2002. № 1. С. 105—110.
- 11. Донец Г.А. Алгоритмы раскраски плоских графов // Там же. 2006. № 5. С. 134–143.
- 12. Донец Г.А., Самер И.М., Альшаламе Решение задачи о построении линейной мозаики // Там же. 2005. № 4. С. 15–24.

Поступила 19.11.2008 Тел. для справок:(044) 526-2188 (Киев) E—mail: ludapl@ukr.net © Г.А. Донец, Л.Н. Колечкина, 2009

42 YCnM, 2009, № 4