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Abstract—If the user is buying a telecommunications service, 

he expects from the provider of a certain quality of servicing. So 

the delivery of telecommunications traffic must be realized with 

the specified quality requirements. As a rule the requirements 

are related to traffic rate, average delay, packet jitter, and the 

reliability (delivery or loss probability). The main way to meet its 

is finding appropriate path or multipath along which these 

requirements are satisfied. The multipath case is related to traffic 

distribution task. In this article we proposed tensor model for 

telecommunication network with RED and formulated analytical 

condition for QoS-ensuring. Satisfaction reliability of the 

condition guarantees that rate and requirements are be achieved 

at the same time. The formulated condition has invariant form 

that doesn’t depend on AQM mechanism type. 

 
Index Terms—Delivery Probability, QoS, Packet loss, RED, 

Reliability, Telecommunication Network, Tensor model 

 

I. INTRODUCTION 

UARANTEED end-to-end Quality of Service (QoS) is 

one of fundamental aspects of modern  

telecommunication network (TCN) [1]. In practice QoS 

ensuring is related to different traffic control features such as 

classification and marking, routing, shaping, policing, 

queuing, congestion management [2]. From viewpoint of 

network productivity the most effective QoS-features from the 

list are multipath routing as tool for load balancing and Active 

Queue Management (AQM) mechanisms as tool for 

congestion management.  

In general the end-to-end QoS requires guaranteeing on 

multiple QoS-parameters, such as rate, average delay, packet 

jitter, and the reliability (delivery or loss probability) at the 

same time. As result QoS ensuring is complex and difficult 

task that needs appropriate mathematical models and 

algorithms. Currently within the existing technological traffic 

control means (protocols and mechanisms) the routing and 
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AQM problems are solved apart by using low-level (from 

viewpoint of their theoretical justification) heuristic models 

and schemes [3] – [4].  

Therefore an important scientific and engineering problem 

is developing sufficient mathematical models that can 

formalize the process of QoS ensuring within solving the 

traffic control task with taking into account multipath routing 

and AQM mechanisms on routers. In this regard, approach 

based on the tensor representation of the telecommunication 

network deserves attention. This mathematical tool has 

already proven itself to provide effective holistic and multi-

aspect description of telecommunication network. In [5] – [6] 

tensor model of TCN enables to obtain analytical conditions 

for satisfaction rate and delay requirements at same time under 

multipath routing.  

Providing a required level of reliability of traffic delivery is 

related to using measurements such as the probability of 

timely delivery of packet, the probability of authentic delivery 

of packet, the probability of failure-free operation, availability 

factor, etc. Reference [7] develops reliability tensor model of 

TCN in terms of the probability of failure-free operation. In 

this article we’ll focus on the probability of packet loss (IP 

packet Loss Ratio, IPLR), which is one of the key 

characteristics of Network Performance [8].  

II. TENSOR MODEL OF THE TELECOMMUNICATION NETWORK 

WITH RED  

In order to develop tensor model of TCN we’ll use a 

technique based on the generalization postulates of G. Kron 

[9]. According to a preliminary postulate in the first phase of 

development behavior equation for a single element of the 

system should be written.  Let us choose link as single 

element of telecommunication network. Then we’ll consider 

the network as a set of connected in a certain way (within a 

certain structure) links. 

It is known that the delivery of the packet in the link and the 

loss of the packet form a complete group of events, i.e. 

 

lpp  1 ,                                  (1) 

 

where p  – the probability of packet delivery; lp  – the 

probability of packet loss. 

In general, the causes of a packet loss can be different, for 

example, the signal’s distortion, coding errors, incorrect 

addressing, a large network delay and expiration of TTL of the 

packet. But the main reason of packet loss in transport 

network is related to a buffer overflow and packet drops, i.e. 

mechanisms of passive and active queue management. At 
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present, most widely applicable queue management 

mechanisms in the packet-switched networks are Random 

Early Detection (RED) and its different modifications [2], [4]. 

RED and its modifications belong to AQM mechanisms where 

dropping of packets from queue can happen before buffer 

overflow. Under RED, discard function lp
 
is linear function 

of the average length of the queue q
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minmax
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pl ,                        (2) 

 

where q  – actual size of the queue (number of packets in 

queue); min  – minimum threshold (if the average queue falls 

below this minimum threshold then no packets are discarded); 

max  – maximum threshold (if the falls above this maximum 

threshold all packets are discarded);   – mark probability 

denominator. 

Then delivery probability for link under RED is 
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The average length of queue q  is function of traffic 

intensity transmitted through the router (link) for the 

formalization of which we will use the results of queuing 

theory as one possible way of its analytical representation. By 

using queuing system 1// MM /N this quantity can be 

represented as [10] 
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where 1 bN ; bΘ  – buffer size; 



   – utilization of 

the link;   – capacity of the link;   – traffic rate in the link.  

Note, as well as in the case of the functional equation for a 

single network element, the estimated average queue length 

can be obtained not only by using the queuing theory, but also 

by using other mathematical tools such as Markov processes, 

empirical methods, etc. 

Let us add a sliding index i  for indicating the number of 

the link, then the functional equation for reliability of the i th 

link can be written as 
 

 












11

1

1
1

1

1
































minmax

min

)(

)(
iN

i

N
ii

i

i

v
i

i

iN

p ,     (5) 

 

where )(v
ip – the probability of packet delivery through i th 

link, ni ,1 ; )(v  – mute index (indicates that the link belongs 

to set of edges V in graph model of network) [11]; i  – 

utilization of the i th link; n  – number of link in the network. 

The system of equations (5) describes separated network 

links. Before turning the system of equations into one tensor 

equation we must be sure that every object from the system (5) 

has tensor nature. References [5] – [6] show tensor nature of 

some network parameters (metrics). It is known that additive 

metrics such as delay, jitter are covariant tensors but metrics 

satisfying conservation constraint, for instance, traffic 

intensity or rate, are contravariant tensors. 

The probability of packet delivery is multiplicative metric, 

i.е. 
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Let us turn the multiplicative metric into the additive 
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Then (5) takes the form 
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or  

 

vvvP  ,                               (7) 

 

where iN  and 
i
v)(  belong to i th  link; vP  – vector of 

reduced (turned into additive form) probability of packet 

delivery with elements  )(
log

v
ia p ; v  – diagonal matrix with 

elements 
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Equation (7) can be interpreted as a projection of the 

following invariant (tensor) equation in the coordinate system 

(CS) of edges (type v) 

 

ΘΛP  ,                                   (9)        

 

where P  – univalent covariant tensor of the reduced 

probability of packet delivery; Λ  – univalent contravariant 

tensor of traffic intensity; Θ  – divalent covariant tensor acting 

as a metric tensor. 

Equation (9) can be written as 

 

XPΛ  ,                                 (10) 

 

where X  – divalent contravariant metric tensor, whose 

projection in the CS of edges is   1
 vvX . 

Note that coordinate system of edges considers the network 

as a set of separated links, i.e. set of single edges. 

Thus, probability tensor model of TCN can be reduced to an 

invariant tensor equation (9), where coordinates of the divalent 

covariant tensor Θ  (8) in the CS of edges are functions of the 

discarding parameters ( min , max ,  ), the size of buffer   

( b ), the capacities of the links ( i ), and the intensities of the 

traffic transmitted through the routers (
i
v)( ). 

III. FORMULATION OF CONDITION FOR ENSURING REQUIRED 

RELIABILITY OF SERVICE  

In order to derive the condition for ensuring quality in terms 

of reliability we’ll use orthogonal representation of the tensor 

model of TCN (9) – (10) in CS of circuits and pairs of nodes. 

This CS considers the network as a set of circuits   and node 

pairs  , where total dimension of CS is equal to n . Then the 

projections of tensors of  traffic intensity Λ  and the reduced 

probability of delivery P  in this coordinate system can be 

represented by the following vectors: 
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where  , P  – n -dimensional vectors that are  

projections of tensors P  and Λ  in CS of circuits and node 

pairs;  , P  –  -dimensional subvectors related to circuits 

in network, 1 mn ; m  – number of nodes in the 

network;  , P  –  -dimensional subvectors related to node 

pairs in network, 1 m .  

Note that circuit components j
)(  и )(

jp  from subvectors 

  
and P  

are related to circuits in a network. So in order to 

eliminate loops in routes we must satisfy the next condition 

 

0P .                                (13) 

 

The components of subvectors   and P
 
show traffic 

intensity and the reduced probability of delivery for different 

pairs of nodes in a network. Then according flow conservation  

law for every transit nodes value 
j
  

must be zero: 
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where 
1

)(
 
– traffic intensity between end points which form 

first pair of nodes.   

In accordance with the second generalization postulate of 

G. Kron [9] tensor equations (9) and (10) have the same form 

in every the coordinate system, i.e. in CS of circuits and node 

pairs tensor equation (10) takes the form 

 

 PX ,                          (15) 

 

where X  – projection of tensor X  in CS of circuits and 

node pairs. 

According to laws of tensor calculus projections of tensors 

P , Λ  and X  in the CS of circuits and node pairs (type  ) 

and in the CS of edges (type v) are related as follows 
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            Cv ,                              (17) 
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             AXAX v
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where A  and C  – matrices of co- and contravariant 

transformation of coordinates when transition from CS of 

circuits and node pairs to CS of edges.  

Using (11) – (123) we can represent (15) in next form 
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X  – square   

and    submatrices, respectively; 
2

X  –    

submatrix, 
3
X  –  

 
submatrix. 

Then from (20) and according (13) we have  
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Further we will consider vectors   and P  as 
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– reduced 

probability of traffic delivery between end points which form 

first pair of nodes. Then (21) can be turned into  
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X  – the first 

element of the matrix 
4
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From (14) and (22) we obtain 
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Elements 
1

)(  and 
)(

1p  are related to pair source- 

destination and in general can include requirements for traffic 

intensity (rate) and the reduced probability of delivery 

(reliability) for this pair, i.e. 
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IPLRP – required value of IPLR.  

Then finally we have the following inequality 
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which is a formalization of the condition for ensuring the 

required quality of service between a given pair of recipients 

from reliability point of view. It is assumed that this condition 

can be placed into dynamic or static model of TCN for solving 

traffic control (engineering) problem in networks with 

guaranteed QoS. 

IV.  EXAMPLE OF THE SOLUTION OF THE QOS- ENSURING 

PROBLEM WITH RATE AND RELIABILITY REQUIREMENTS 

 

Let us make an example of solving QoS-ensuring problem 

with two required parameters (transmission rate and the 

probability of packet delivery) in environment of multipath 

routing and active queue management mechanism such as 

RED. The solving QoS-ensuring problem is related to traffic 

distribution under which given QoS-requirements will be 

satisfied. Fig. 1 shows example of network where capacity i  

for every link is known (Table I). For given pair source- 

destination we will find set of routes such as total for traffic 

rate (intensity) from source to destination will be not less than 

535
req

  1/s (in packets per second) and result loss will be 

not more than 030,
req

IPLRP  (   9702 ,logreqp -0,0439). 

To simplify the problem, assume parameters of mechanism 

RED on all nodes are the same: min = 5 and max = 40 

packets,  = 10, which correspond to the recommended 

parameters. 

Numerical results that satisfy the condition (24) and given 

QoS-requirements are shown into Table I and in Fig. 2. 

According to the results for servicing traffic between nodes 1 

(source) and 6 (destination) at given rate 
req

  and with 

given IPLR 
req

IPLRP  we need use four paths that are shown in 

Fig. 1 and into Table II. 
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Fig. 1. Example of network structure and obtained set of paths 



Thus, the obtained solution, firstly, meets the specified rate 

and reliability (packet loss) requirements, and secondly, 

provides not only desired, but the same probability of delivery 

(loss) through all traffic routes. 

V. CONCLUSIONS 

 Thus, the problem of traffic control with QoS-ensuring 

requires an adequate mathematical model of the 

telecommunication network that take into account the QoS 

requirements, on the one hand, and the structural and 

functional features of the TCN and characteristics of traffic, 

on the another hand. Such contradictory requirements can be 

satisfied within tensor approach, which has been demonstrated 

in this paper. The obtained formalization of the condition for 

ensuring the required reliability of service in networks takes 

into account characteristics of traffic, the parameters of the 

active queue management mechanisms, the structural 

properties of the network and focuses on the multipath 

transmitting. The condition (24) was formulated from 

invariant tensor equations and has invariant form that doesn’t 

depend on AQM mechanism type. The parameters of AQM 

affect numerical values of the projections of the metric tensor, 

and doesn’t affect the form of the condition (24). This 

distinctive feature allows to apply the condition (24) in the 

network not only with RED, but with other mechanisms of 

active queue management.   
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TABLE I 
RESULT TRAFFIC DISTRIBUTION AS SOLUTION OF QOS-ENSURING PROBLEM 

Number of the link 

(edge) 
i  

Capacity of the link 

i , 1/s 

Traffic intensity in the 

link 
i
v)(  , 1/с 

Reduced probability 

of delivery 

 )(
log

v
ip2  

Probability of delivery 

in the link
)(v

ip  

Probability of loss in 

the link 
)(v

ip1  

1 445 401 -0,0116 0,9920 0,0080 

2 282 265 -0,0268 0,9816 0,0184 

3 432 381 -0,0055 0,9962 0,0038 
4 147 134 -0,0155 0,9893 0,0107 

5 292 270 -0,0195 0,9866 0,0134 

6 172 154 -0,0089 0,9939 0,0061 
7 155 136 -0,0039 0,9973 0,0027 

8 133 116 -0,0034 0,9977 0,0023 

 

TABLE II 
SET OF USED ROUTES AND PROBABILITY OF DELIVERY THROUGH ITS 

Path Traffic 

intensity  

through 

path, 1/s 

Probability of delivery through path 

321 vvv  , ,  ≈265 ( 99620981609920 ,,,  )≈0,97 

7651 vvvv  , , ,  ≈136 ( 9973099390986609920 ,,,,  )≈0,97 

654 vvv  , ,  ≈18 ( 993909866098930 ,,,  )≈0,97 

8543 vvvv  , , ,  ≈116 ( 99770986609893099620 ,,,,  )≈0,97 

 

 

Sender Destination

n2

n1

n3

n4

n5

n6

445
-------
401

-------
0,992

282
-------
265

-------
0,9816

432
-------
381

-------
0,9962

147
-------
134

-------
0,9893

292
-------
270

-------
0,9866

172
-------
154

-------
0,9939

155
-------
136

-------
0,9973

133
-------
116

-------
0,9977

1v

7v

4v

2v

5v

8v

3v

6v

 
 

Fig. 2. Result traffic distribution between links that satisfy given QoS-

requirements. Values near every link show (top-down) capacity, traffic 

intensity and the probability of delivering through the link. 


